期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
基于DIoU损失与平滑约束的结构化SVM目标跟踪方法
1
作者 孙子文 袁广林 +2 位作者 李从利 秦晓燕 朱虹 《计算机科学》 CSCD 北大核心 2024年第S01期389-396,共8页
基于结构化SVM的目标跟踪因其优良的性能而受到了广泛的关注,但是现有方法存在损失函数不精确和模型漂移问题。针对这两个问题,首先提出基于DIoU损失与平滑约束的结构化SVM模型。该模型采用DIoU函数作为损失函数,利用t时刻超平面法向量w... 基于结构化SVM的目标跟踪因其优良的性能而受到了广泛的关注,但是现有方法存在损失函数不精确和模型漂移问题。针对这两个问题,首先提出基于DIoU损失与平滑约束的结构化SVM模型。该模型采用DIoU函数作为损失函数,利用t时刻超平面法向量w_(t)与t-1时刻超平面法向量w_(t-1)差值的L_(2)范数作为平滑约束。其次基于对偶坐标下降原理设计了该模型的求解算法。最后利用提出的基于DIoU损失与平滑约束的结构化SVM实现了一种多尺度目标跟踪方法。对所提出的目标跟踪方法在OTB100和VOT-ST2021数据集上进行了实验验证,实验结果表明:所提出的Scale-DCSSVM在OTB数据集上的跟踪成功率比DeepSRDCF高1.1个百分点,在VOT-ST2021上的EAO比E.T.Track高1.2个百分点。所提方法具有较优的性能。 展开更多
关键词 目标跟踪 结构化SVM diou损失 平滑约束
下载PDF
基于N3D_DIOU的图像与点云融合目标检测算法 被引量:2
2
作者 郭保青 谢光非 《光学精密工程》 EI CAS CSCD 北大核心 2021年第11期2703-2713,共11页
目标检测是自主驾驶和机器人导航的基础,针对二维图像信息量不足,三维点云数据量大、密度不均匀和检测精度低等问题,本文基于深度学习提出了一种融合二维图像与三维点云的目标检测网络进行三维目标检测。为减少运算量,论文首先用二维图... 目标检测是自主驾驶和机器人导航的基础,针对二维图像信息量不足,三维点云数据量大、密度不均匀和检测精度低等问题,本文基于深度学习提出了一种融合二维图像与三维点云的目标检测网络进行三维目标检测。为减少运算量,论文首先用二维图像检测器生成的检测框对应的平截头体对原始点云进行滤波;为解决点云密度不均匀问题,提出了一种基于广义霍夫变换的改进投票模型网络用于多尺度特征提取;最后将二维DIOU(Distance Intersection over Union)损失函数扩展为三维空间的N3D_DIOU(Normal 3 Dimensional DIOU)损失函数,提高了生成框和目标框的一致性,进一步提高了点云检测精度。在KITTI数据集上进行的大量实验表明:与经典方法相比,本文算法在汽车三维检测精度上提升了0.71%,在鸟瞰图检测精度上提升了7.28%,取得了较好效果。 展开更多
关键词 目标检测 二维图像 三维点云 三维diou 特征融合
下载PDF
基于改进Yolov5s的增强现实文物识别方法
3
作者 张元 关瑜 +2 位作者 熊风光 庞敏 况立群 《计算机技术与发展》 2024年第7期17-23,共7页
将增强现实技术应用于数字博物馆的文物展览,有助于拉近参观者与文物的距离,使展览更具趣味性。针对增强现实技术在文物展览应用场景中,增强现实设备采集的文物目标图像背景复杂、文物形状纹理丰富而导致的误检、识别准确率低的问题,提... 将增强现实技术应用于数字博物馆的文物展览,有助于拉近参观者与文物的距离,使展览更具趣味性。针对增强现实技术在文物展览应用场景中,增强现实设备采集的文物目标图像背景复杂、文物形状纹理丰富而导致的误检、识别准确率低的问题,提出一种基于改进的Yolov5s的文物识别方法。在Yolov5s网络结构中的骨干网络与颈部网络之间引入了CBAM注意力机制,并在骨干网络中的Bottleneck模块中,使用多头注意力机制替换普通卷积,有效捕获局部信息,降低了无用信息的干扰。为了提高识别网络对于目标文物的边界框定位精度,采用DIoU-NMS方法挑选最优的目标识别框作为最终的预测框。实验结果表明,该方法提高了文物的平均识别精度,比原模型更适用于AR应用文物的目标识别。 展开更多
关键词 增强现实 文物识别 Yolov5s 注意力机制 多头自注意力机制 diou-NMS
下载PDF
基于YOLOv8改进的打架斗殴行为识别算法:EFD-YOLO
4
作者 曹雨淇 徐慧英 +4 位作者 朱信忠 黄晓 陈晨 周思瑜 盛轲 《计算机工程与科学》 CSCD 北大核心 2024年第10期1825-1834,共10页
在当今社会,打架斗殴检测技术对于防范暴力事件和冲突至关重要。结合监控摄像头和目标检测,能够实时监测人群活动,从而有效预防潜在威胁。因此,提出了一种基于YOLOv8改进的打架斗殴行为识别算法EFD-YOLO。EFD-YOLO采用EfficientRep替换... 在当今社会,打架斗殴检测技术对于防范暴力事件和冲突至关重要。结合监控摄像头和目标检测,能够实时监测人群活动,从而有效预防潜在威胁。因此,提出了一种基于YOLOv8改进的打架斗殴行为识别算法EFD-YOLO。EFD-YOLO采用EfficientRep替换主干网络,提高了特征提取的效率,并在监控范围内实现准确实时的特征提取。引入FocalNeXt焦点模块,通过深度卷积和跳跃连接的结合,解决了遮挡问题和多尺度特征需求问题。采用Focal-DIoU作为边界框回归损失函数,在复杂情况下减少了误检的问题。实验结果显示,EFD-YOLO算法相较于YOLOv8n在mAP@0.5指标上提升了4.2%,在mAP@0.5:0.95指标上提升了2.5%,满足关键场所中实时检测打架斗殴行为的需求。 展开更多
关键词 目标检测 打架斗殴 YOLOv8 EfficientRep FocalNeXt Focal-diou
下载PDF
基于改进YOLOv5m的电动车骑行者头盔与车牌检测方法 被引量:5
5
作者 庄建军 叶振兴 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2024年第1期1-10,共10页
电动车上路必须佩戴安全头盔已成为交管部门的强制性规定.为了能自动检测出电动车骑行者的头盔佩戴情况,提出一种基于改进的YOLOv5m模型的头盔与车牌检测方法,在检测出骑行者未佩戴头盔的同时还能检测出电动车车牌.模型使用自建电动车... 电动车上路必须佩戴安全头盔已成为交管部门的强制性规定.为了能自动检测出电动车骑行者的头盔佩戴情况,提出一种基于改进的YOLOv5m模型的头盔与车牌检测方法,在检测出骑行者未佩戴头盔的同时还能检测出电动车车牌.模型使用自建电动车骑行者头盔与车牌检测数据集进行训练,用DIOU损失函数代替GIOU损失函数,DIOU_NMS代替加权NMS,增强模型对密集骑行场景的识别能力.在Backone部位与预测中小目标的Neck部位加入ECA注意力机制,使得模型对中小目标的识别率有所提高;用K-means算法对锚框尺寸重新进行聚类.最后,改进Mosaic数据增强方式.实验结果表明:改进的YOLOv5m电动车骑行者头盔与车牌检测模型的mAP为92.7%,较原YOLOv5m模型提高2.15个百分点,较YOLOv4-tiny、Faster RCNN模型分别提高5.7个百分点与6.9个百分点.改进后的YOLOv5m模型能有效提高对头盔与车牌的识别率. 展开更多
关键词 头盔检测 车牌检测 YOLOv5m 注意力机制 diou K-MEANS算法 改进Mosaic数据增强
下载PDF
基于改进YOLOv5s的骑行头盔佩戴检测算法研究
6
作者 李鸿治 舒远仲 +1 位作者 肖靖 聂云峰 《南昌航空大学学报(自然科学版)》 CAS 2024年第3期95-102,共8页
电动自行车因其出行便利性,逐渐成为主流出行方式。但是在道路交通事故中,电动车骑行人员伤亡率居高不下。为解决电动车高伤亡率的问题,采用改进的YOLOv5s对道路场景下的骑行头盔佩戴情况进行检测。首先,用GSConv Module代替原有YOLOv5... 电动自行车因其出行便利性,逐渐成为主流出行方式。但是在道路交通事故中,电动车骑行人员伤亡率居高不下。为解决电动车高伤亡率的问题,采用改进的YOLOv5s对道路场景下的骑行头盔佩戴情况进行检测。首先,用GSConv Module代替原有YOLOv5s骨干网络中的标准卷积,在保证检测精度的同时,提高网络运行速度;其次,引入CA(Coordinate Attention)坐标注意力机制,补充位置信息,增强关键信息的特征表达;最后,使用DIoU损失函数替换原YOLOv5s中的GIoU损失函数,提升算法的目标检测能力。结果表明,在自建骑行电动车头盔数据集上,改进后的YOLOv5s网络对骑行头盔的检测平均精度比原始YOLOv5s提高了3.7%,能够实现对骑行头盔佩戴的检测。 展开更多
关键词 头盔检测 YOLOv5s GSConv 注意力机制 diou损失函数
下载PDF
基于改进YOLOX的城市河道智能水位测量算法
7
作者 吕姚 包学才 +2 位作者 彭宇 查小红 黄明坤 《南昌工程学院学报》 CAS 2024年第3期13-18,共6页
针对目前基于深度学习水位测量算法存在特征信息提取不充分问题,提出一种基于改进YOLOX的城市河道水位智能测量算法。为了提高YOLOX对多类别密集目标的识别率,在特征融合网络中引入CBAM注意力机制,并采用基于计算目标框信息的损失函数D-... 针对目前基于深度学习水位测量算法存在特征信息提取不充分问题,提出一种基于改进YOLOX的城市河道水位智能测量算法。为了提高YOLOX对多类别密集目标的识别率,在特征融合网络中引入CBAM注意力机制,并采用基于计算目标框信息的损失函数D-IoU加快模型收敛。该算法利用改进后的YOLOX对水尺刻度进行识别与统计,并计算出水位值。试验表明提出的新算法对水尺刻度和数字的平均识别率分别达98.62%和92.23%,最终计算水位的平均误差为1.16 cm,较其他图像识别水位测量算法的平均误差减少了1.76 cm,可实现高精度智能测量城市河道的水位值。 展开更多
关键词 深度学习 水位测量 CBAM diou
下载PDF
基于改进YOLOv8的行人摔倒检测算法
8
作者 王震 李莉 +1 位作者 王奇 王树云 《计算机科学与应用》 2024年第8期160-167,共8页
随着社会老龄化进程的加快,行人摔倒事故成为了一个严重的社会问题。本文围绕基于改进YOLOv8的行人摔倒检测研究展开,针对原始YOLOv8在行人摔倒检测任务中存在的不足,提出了YOLOv8-RFAConv-Diou-Inner-Focaler模型。该模型通过RFA Conv... 随着社会老龄化进程的加快,行人摔倒事故成为了一个严重的社会问题。本文围绕基于改进YOLOv8的行人摔倒检测研究展开,针对原始YOLOv8在行人摔倒检测任务中存在的不足,提出了YOLOv8-RFAConv-Diou-Inner-Focaler模型。该模型通过RFA Conv卷积操作,在卷积层引入注意力机制,增强对重要特征的关注,提高特征的表达能力。引入Diou损失函数解决传统损失函数在目标重叠和尺度变化时的不足以及Inner-Focaler损失函数动态调整损失权重。通过实验验证:本文提出的改进算法在行人摔倒检测任务中取得了显著的性能提升,对比原始算法(YOLOv8算法)在平均精度上提高了4.8%。With the acceleration of social aging, pedestrian falling accidents have become a serious social problem. This article focuses on the research of pedestrian fall detection based on improved YOLOv8. In response to the shortcomings of the original YOLOv8 in pedestrian fall detection tasks, a YOLOv8-RFAConv-Diou-Inner-Focaler model is proposed. This model introduces attention mechanism in the convolutional layer through RFA Conv convolution operation, enhancing the attention to important features and improving the expression ability of features. Introducing the Diou loss function to address the shortcomings of traditional loss functions in target overlap and scale changes, as well as dynamically adjusting loss weights using the Inner Focaler loss function. Through experimental verification, the improved algorithm proposed in this paper has achieved significant performance improvement in pedestrian fall detection tasks, with an average accuracy improvement of 4.8% compared to the original algorithm (YOLOv8 algorithm). 展开更多
关键词 行人摔倒 YOLOv8 注意力 diou Inner-Focaler
下载PDF
基于改进YOLOv8n的煤矿带式输送异物检测研究
9
作者 李宗霖 王广祥 +1 位作者 张立亚 李明亮 《矿业安全与环保》 CAS 北大核心 2024年第4期41-48,共8页
在煤矿带式输送物料过程中,异物的出现可能会引发输送带撕裂或堵塞等安全风险。针对输送带输送物料中异物多样、人工巡检效率低、硬件限制等问题,提出一种基于改进YOLOv8n的轻量化煤矿带式输送异物检测算法:采用GhostNetV2网络对原CSPDa... 在煤矿带式输送物料过程中,异物的出现可能会引发输送带撕裂或堵塞等安全风险。针对输送带输送物料中异物多样、人工巡检效率低、硬件限制等问题,提出一种基于改进YOLOv8n的轻量化煤矿带式输送异物检测算法:采用GhostNetV2网络对原CSPDarkNet53主干网络进行轻量化改进,以减少模型的参数和计算量;整合全局平均池化和全局最大池化思想优化SPPF模块,关注煤矿恶劣环境影响下图像的底层信息;设计了headC2f_CA模块,融入通道注意力机制,以便能够更有效地捕捉不同尺度和位置的异物特征,强化特征信息表达;引入DIoU损失函数,精确反映锚框与预测框之间的相似度,提升模型检测精度。实验结果表明,改进后的模型平均精度均值达88.3%,相比于基线模型YOLOv8n,提升了0.8%,参数量减少了18.51%,计算量减小了20.73%,模型大小缩减了15.87%。该模型有效缓解了边缘设备的硬件限制,同时保障了煤矿安全监测的准确性。 展开更多
关键词 煤矿 带式输送机 输送带异物 部署轻量化 GhostNetV2 SPPF优化 headC2f_CA注意力模块 diou损失函数
下载PDF
基于高效通道注意力机制的Fair MOT多目标跟踪
10
作者 张慧旺 《信息技术与信息化》 2024年第1期90-93,共4页
多目标跟踪是计算机视觉领域中的一个重要且热门的任务。针对在真实复杂场景中目标的漏检以及ID匹配不准确的问题,提出一种基于FairMOT算法的改进算法。通过引入双分支高效注意力机制模块即DMECA,分别加强检测与重识别分支的特征,以解... 多目标跟踪是计算机视觉领域中的一个重要且热门的任务。针对在真实复杂场景中目标的漏检以及ID匹配不准确的问题,提出一种基于FairMOT算法的改进算法。通过引入双分支高效注意力机制模块即DMECA,分别加强检测与重识别分支的特征,以解决多任务训练平衡问题。优化分支头的结构,将传统卷积方式修改为深度可分离卷积,并采用LeakyRelu激活函数。在数据关联模块的第二阶段匹配中,使用距离交并比(DIOU)替代交并比(IOU)计算代价矩阵进行匹配。实验结果表明,在MOT17数据集上IDS下降了625,此外HOTA、IDF1分别提高了0.3%、0.4%。 展开更多
关键词 多目标跟踪 通道注意力机制 深度可分离卷积 diou
下载PDF
改进YOLOv3算法下通航机场场面运动目标检测 被引量:2
11
作者 夏正洪 魏汝祥 李彦冬 《中国安全科学学报》 CAS CSCD 北大核心 2023年第2期82-88,共7页
为获得更好的检测精度和更快的检测速度,保障通航机场场面运行安全,提出一种改进的YOLOv3算法,分别从网络结构和损失函数2方面进行改进。首先,在主干网络中使用深度可分离卷积代替原卷积,构建基于距离交并比(DIoU)的目标框回归损失函数... 为获得更好的检测精度和更快的检测速度,保障通航机场场面运行安全,提出一种改进的YOLOv3算法,分别从网络结构和损失函数2方面进行改进。首先,在主干网络中使用深度可分离卷积代替原卷积,构建基于距离交并比(DIoU)的目标框回归损失函数;然后,以某通航机场为研究对象,搭建通航机场场面目标检测场景,采用迁移学习和冻结训练相结合的训练方法,以提升场面目标检测的速度;最后,比较分析所提算法与传统的YOLOv3、YOLOv4算法的识别效果。结果表明:飞机目标的检测效果明显优于车辆和人员目标,改进的YOLOv3算法对目标的检测精度、召回率、全类平均精度(mAP)分别达到92.96%、80.51%、91.96%,图形处理器处理速度高达74帧/s,较传统的YOLOv3、YOLOv4算法性能均有明显提升,可实现通航机场场面运动目标的有效检测。 展开更多
关键词 改进YOLOv3算法 通航机场 目标检测 深度可分离卷积 距离交并比(diou)
下载PDF
改进YOLOv5s的非机动车头盔佩戴检测方法 被引量:2
12
作者 张子涵 袁栋 +1 位作者 张经炜 艾长青 《软件》 2023年第3期37-43,共7页
针对传统非机动车头盔检测算法目标漏检率高,在密集骑行场景下检测精度低等问题,提出了一种基于改进YOLOv5s的非机动车头盔佩戴检测算法。该算法采用Kmeans++算法聚类生成锚框,增强网络的稳定性;接着使用轻量级通用上采样算子(CARAFE)... 针对传统非机动车头盔检测算法目标漏检率高,在密集骑行场景下检测精度低等问题,提出了一种基于改进YOLOv5s的非机动车头盔佩戴检测算法。该算法采用Kmeans++算法聚类生成锚框,增强网络的稳定性;接着使用轻量级通用上采样算子(CARAFE)对高阶特征图进行上采样操作,增大感受野,充分利用特征语义信息;同时在Backbone模块和Head端前引入坐标注意力机制(coordinate attention,CA),在保证轻量化的同时,进一步提高算法的检测精度;最后利用DIo U-NMS对目标检测模型的输出后处理,降低密集场景下模型的漏检率,改善遮挡物体的检测能力。与YOLOv5s算法相比,改进后的算法精确度、召回率、平均精度分别提升了2.3%、1.5%和1.5%,能够实现对非机动车头盔佩戴的高精度检测。 展开更多
关键词 头盔检测 YOLOv5s Kmeans++CARAFE 注意力机制 diou-NMS
下载PDF
基于改进YOLOv5算法的密集遮挡零件检测
13
作者 张新伟 陈东 +1 位作者 闫昊 马兆昆 《工具技术》 北大核心 2023年第10期150-155,共6页
针对零件在密集遮挡等复杂场景下存在视觉识别难度大、检测精度低和实时性差的问题,提出YOLOv5零件目标检测的改进算法。在YOLOv5的主干网络中添加卷积注意力机制模块,进而增强算法对零件的特征提取能力;将抑制准则改为考虑真实框与预... 针对零件在密集遮挡等复杂场景下存在视觉识别难度大、检测精度低和实时性差的问题,提出YOLOv5零件目标检测的改进算法。在YOLOv5的主干网络中添加卷积注意力机制模块,进而增强算法对零件的特征提取能力;将抑制准则改为考虑真实框与预测框重叠区域且同时计算两个框之间中心点距离的DIoU-NMS,并以此作为后处理方法,进而提高零件检测精度。试验结果表明,相比原始YOLOv5算法,本改进算法将mAP@0.5提升1.6%,识别速度达58.8帧/s,可以更好地完成检测密集遮挡零件的任务,同时保证了实时性。 展开更多
关键词 目标检测 YOLOv5 卷积注意力机制模块 diou-NMS
下载PDF
基于改进YOLOv5羊只目标检测方法
14
作者 张博凡 孙丙宇 房永峰 《淮北师范大学学报(自然科学版)》 CAS 2023年第4期65-71,共7页
针对羊的群居特性导致羊只重叠程度较高、检测效率低,且易造成漏检错检等问题,提出一种基于改进YOLOv5羊只目标检测方法。将YOLOv5的耦合头部替换为解耦头部,用来提升收敛速度;引入C3SE注意力模块,使网络可以更专注学习羊只特征;将NMS(N... 针对羊的群居特性导致羊只重叠程度较高、检测效率低,且易造成漏检错检等问题,提出一种基于改进YOLOv5羊只目标检测方法。将YOLOv5的耦合头部替换为解耦头部,用来提升收敛速度;引入C3SE注意力模块,使网络可以更专注学习羊只特征;将NMS(Non-Maximum Suppression)更换为DIOU-NMS(Distance Intersec⁃tion Over Union-Non-Maximum Suppression),解决羊群因重叠检测不精确问题,提升定位与检测精度。实验结果表明,改进后的YOLOv5精准度P提升2.8%,召回率R提升3.5%,平均精度均值mAP提升3.0%,满足实际场景对羊只的检测要求。 展开更多
关键词 目标检测 YOLOv5 SE注意力机制 diou-NMS 头部解耦
下载PDF
基于改进YOLOv5的工业安全帽检测
15
作者 刘斯逸 何青 《现代计算机》 2023年第21期1-8,共8页
YOLO系列算法是目前计算机视觉目标检测领域主流的算法模型,其中以YOLOv5为代表的算法往往具有更快的检测速度和更高的准确率。由于工业施工现场受到例如光照、遮挡等复杂因素的影响,现有的检测算法对于小目标的检测精度不佳,存在漏检... YOLO系列算法是目前计算机视觉目标检测领域主流的算法模型,其中以YOLOv5为代表的算法往往具有更快的检测速度和更高的准确率。由于工业施工现场受到例如光照、遮挡等复杂因素的影响,现有的检测算法对于小目标的检测精度不佳,存在漏检、错检等问题。鉴于此,提出一种改进的YOLOv5安全帽检测算法。算法的改进主要为两方面,一方面对YOLOv5的三个预测输出层分别加入三种不同的自注意力机制,对大、中、小三个预测输出层之前分别加入SKNet模块、CA模块、ECA模块用以增强模型对于中小目标检测的鲁棒性,加入通道和空间的特征信息使得模型在预测中小目标时专注于被检测目标,同时在每一个模块引入残差连接,提高训练速度,有效解决因为引入自注意力机制造成的梯度消失问题;另一方面改进原来预测边界框的损失函数,采用DIoU损失函数加快训练的速度,提高了检测精度。在开源的数据集上进行实验验证,实验结果显示改进后的YOLOv5模型对比于改进之前的mAP值提升了1.6%。 展开更多
关键词 YOLOv5 SKNet模块 CA模块 ECA模块 diou损失函数
下载PDF
基于改进YOLOv5的目标检测算法研究
16
作者 胡冠真 李宏滨 +1 位作者 吴彦昕 沈帅杰 《信息技术与信息化》 2023年第11期103-107,共5页
为提高道路目标检测精度,采用了基于YOLOv5网络模型的改进算法。其中,利用Mish激活函数来提高特征提取能力,引入CBAM注意力机制对特征信息进行增强,采用DIOU目标回归损失函数来直接最小化两个目标框的距离,从而提高收敛速度。实验结果表... 为提高道路目标检测精度,采用了基于YOLOv5网络模型的改进算法。其中,利用Mish激活函数来提高特征提取能力,引入CBAM注意力机制对特征信息进行增强,采用DIOU目标回归损失函数来直接最小化两个目标框的距离,从而提高收敛速度。实验结果表明,所提出的算法在公开的自动驾驶数据集KITTI上的表现非常出色,达到了91.1%的mAP和94.9%的检测精度,相比原始算法分别提高了3.1%和3.2%。此外,所提出的算法具有较好的检测速度(69帧/s)和实时性,相比一些主流的目标检测算法,具有一定的优越性。 展开更多
关键词 目标检测 YOLOv5 CBAM注意力机制 Mish激活函数 diou损失函数
下载PDF
复杂场景下的行人跌倒检测算法 被引量:5
17
作者 方可 刘蓉 +2 位作者 魏驰宇 张心月 刘杨 《计算机应用》 CSCD 北大核心 2023年第6期1811-1817,共7页
随着人口老龄化程度的不断深化,跌倒检测成为医疗与健康领域的一个关键问题。针对复杂场景下跌倒检测算法准确率偏低的问题,提出一种改进的跌倒检测模型——PDD-FCOS(PVT DRFPN DIoU-Fully Convolutional One-Stage object detection)... 随着人口老龄化程度的不断深化,跌倒检测成为医疗与健康领域的一个关键问题。针对复杂场景下跌倒检测算法准确率偏低的问题,提出一种改进的跌倒检测模型——PDD-FCOS(PVT DRFPN DIoU-Fully Convolutional One-Stage object detection)。在基准FCOS算法的骨干网络中引入金字塔视觉转换器(PVT),以不增加计算量为前提提取更丰富的语义信息;在特征信息融合阶段插入双重细化特征金字塔网络(DRFPN),更加准确地学习特征图之间采样点的位置和其他信息,并通过上下文信息捕获特征通道之间更准确的语义关系,从而提升检测性能;训练阶段采用距离交并比(DIoU)损失进行边界框回归,通过优化预测框与目标框中心点的距离,使回归框收敛得更快更准确,从而有效提高跌倒检测算法的准确率。实验结果表明,所提模型在开源数据集Fall detection Database上平均精确度均值(mAP)达到82.2%,与基准FCOS算法相比,所提算法的mAP提升了6.4个百分点,且相较于其他主流目标检测算法有精度上的提升以及更好的泛化能力。 展开更多
关键词 目标检测 行人跌倒检测 金字塔视觉转换器 注意力机制 双重细化特征金字塔网络 距离交并比
下载PDF
基于改进YOLOX-s的轻量级型钢表面缺陷检测算法 被引量:1
18
作者 黄啸 吴龙 +1 位作者 黎尧 吕宏泽 《计算机应用》 CSCD 北大核心 2023年第S02期201-208,共8页
单阶段目标检测网络特征融合性能不足,且型钢生产现场计算资源受限,导致型钢表面缺陷检测精度较低。针对上述问题,提出一种改进YOLOX-s的轻量级型钢表面缺陷检测算法。首先,提出一种轻量级双路并行注意力模块并将该模块引入YOLOX-s,以... 单阶段目标检测网络特征融合性能不足,且型钢生产现场计算资源受限,导致型钢表面缺陷检测精度较低。针对上述问题,提出一种改进YOLOX-s的轻量级型钢表面缺陷检测算法。首先,提出一种轻量级双路并行注意力模块并将该模块引入YOLOX-s,以提高网络对缺陷特征的敏感度和提升有效特征的提取效率;其次,在Neck中构建双向特征金字塔网络(BiFPN)加权特征融合路径,促进浅层细节特征与深层语义特征的交互融合,强化网络特征融合能力,并在网络中引入深度可分离卷积(DSC)对模型进行轻量化处理;最后,将模型的边界框回归损失函数替换为完全交并比(CIoU)损失,加快模型收敛,提升预测框的定位精度。在NEU-DET数据集上的实验结果表明,所提算法的平均精度均值(mAP)达到了74.6%,比原始YOLOX-s提升了4.8个百分点,推理帧率达到75.2 frame/s,能够满足实时性检测的需求;生产现场采集的型钢数据集进一步验证了所提算法的可行性。 展开更多
关键词 YOLOX-s 双向特征金字塔网络 并行注意力 完全交并比 损失 深度可分离卷积 型钢表面缺陷检测
下载PDF
一种管道蛇形机器人的裂缝视频检测系统 被引量:5
19
作者 赵达 王亚慧 陈林林 《科学技术与工程》 北大核心 2023年第6期2492-2498,共7页
为实现蛇形机器人在管道内部快速准确的识别管道内壁裂缝,基于一种改进YOLOv3算法为管道蛇形机器人设计了快速检测管道裂缝的系统。该系统搭载了500万像素相机以及用于辅助标定的两个激光发生器,通过摄像机采集管道内部视频信息,使用改... 为实现蛇形机器人在管道内部快速准确的识别管道内壁裂缝,基于一种改进YOLOv3算法为管道蛇形机器人设计了快速检测管道裂缝的系统。该系统搭载了500万像素相机以及用于辅助标定的两个激光发生器,通过摄像机采集管道内部视频信息,使用改进YOLOv3算法对视频进行检测,若识别出裂缝则输出当前图像。之后结合激光标定和边缘检测算法得到当前裂缝的几何信息。改进YOLOv3算法使用K-means++算法对裂缝数据集进行聚类,得到最佳先验框,并使用距离交并比代替传统的交并比作为损失函数,以提高识别精度和速度。实验表明,改进YOLOv3算法平均精度为87.23%,与原始YOLOv3算法相比提高了5.88%;同时基于激光标定算法的图像处理得到的裂缝几何信息与实际尺寸误差在5%以内,可以用于实际工程。 展开更多
关键词 管道裂缝 动态目标检测 YOLOv3算法 管道蛇形机器人 距离交并比 K-means++
下载PDF
基于深度学习的生姜种芽快速识别及其朝向判定 被引量:8
20
作者 侯加林 房立发 +2 位作者 吴彦强 李玉华 席芮 《农业工程学报》 EI CAS CSCD 北大核心 2021年第1期213-222,共10页
针对目前生姜机械化播种难以实现“种芽朝向一致”农艺要求的问题,该研究提出了一种基于深度学习的生姜种芽快速识别及其朝向判定的方法。首先,构建生姜数据集。其次,搭建YOLO v3网络进行种芽的识别,包括:使用Mosaic等在线数据增强方式... 针对目前生姜机械化播种难以实现“种芽朝向一致”农艺要求的问题,该研究提出了一种基于深度学习的生姜种芽快速识别及其朝向判定的方法。首先,构建生姜数据集。其次,搭建YOLO v3网络进行种芽的识别,包括:使用Mosaic等在线数据增强方式,增加图像的多样性,解决小数据集训练时泛化能力不足的问题;引入DIoU(Distance Intersection over Union)边框回归损失函数来提高种芽识别回归效果;使用基于IoU的K-means聚类方法,经线性尺度缩放得到9个符合种芽尺寸的先验框,减少了先验框带来的误差。最后进行壮芽的选取及其朝向的判定。测试集中的结果表明,该研究提出的生姜种芽识别网络,平均精度和精准率、召回率的加权调和平均值F1分别达到98.2%和94.9%,采用GPU硬件加速后对生姜种芽的检测速度可达112帧/s,比原有YOLO v3网络的平均精度和F1值分别提升1.5%和4.4%,实现了生姜种芽的快速识别及其朝向的判定,为生姜自动化精确播种提供了技术保证。 展开更多
关键词 图像识别 算法 卷积神经网络 生姜种芽 diou边框回归损失函数
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部