The dip-angle-domain common-image gather(DDCIG)is a key tool to separate the diffraction and reflection imaging results.Reflectors with different spatial geometries produce different responses in DDCIGs.Compared with ...The dip-angle-domain common-image gather(DDCIG)is a key tool to separate the diffraction and reflection imaging results.Reflectors with different spatial geometries produce different responses in DDCIGs.Compared with Kirchhoff migration,Gaussian beam migration(GBM)is more effective and robust to overcome the multipathing problem.As a ray-based method,it has explicit angle information naturally during the propagation.We have developed a 3D DDCIG computational method using GBM,which obtain both the imaging result and angle-domain gathers with only one pass of calculation.The angle-gather computation is based on geometrical optics,and multiple angle conversions are implemented under the rules of space geometry,which helps to avoid rounding errors and improve accuracy.Additionally,the multi-azimuth joint presentation strategy is proposed to describe the characteristic of omnidirectional dip angles using a finite number of gathers.After using a 2D model to illustrate application advantages of DDCIG,we apply the proposed method to two 3D models to test its feasibility and accuracy.A field data example further demonstrates the adaptability of our method to seismic imaging for a land survey.展开更多
基金financial support jointly provided by the National Key R&D Program of China under contract number 2019YFC0605503Cthe Major Projects during the 14th Five-year Plan period under contract number 2021QNLM020001+2 种基金the National Outstanding Youth Science Foundation under contract number 41922028the Funds for Creative Research Groups of China under contract number 41821002the Major Projects of CNPC under contract number ZD2019-183-003。
文摘The dip-angle-domain common-image gather(DDCIG)is a key tool to separate the diffraction and reflection imaging results.Reflectors with different spatial geometries produce different responses in DDCIGs.Compared with Kirchhoff migration,Gaussian beam migration(GBM)is more effective and robust to overcome the multipathing problem.As a ray-based method,it has explicit angle information naturally during the propagation.We have developed a 3D DDCIG computational method using GBM,which obtain both the imaging result and angle-domain gathers with only one pass of calculation.The angle-gather computation is based on geometrical optics,and multiple angle conversions are implemented under the rules of space geometry,which helps to avoid rounding errors and improve accuracy.Additionally,the multi-azimuth joint presentation strategy is proposed to describe the characteristic of omnidirectional dip angles using a finite number of gathers.After using a 2D model to illustrate application advantages of DDCIG,we apply the proposed method to two 3D models to test its feasibility and accuracy.A field data example further demonstrates the adaptability of our method to seismic imaging for a land survey.