期刊文献+
共找到48,961篇文章
< 1 2 250 >
每页显示 20 50 100
Investigation of the block toppling evolution of a layered model slope by centrifuge test and discrete element modeling 被引量:1
1
作者 Leilei Jin Hongkai Dong +3 位作者 Fei Ye Yufeng Wei Jianfeng Liu Changkui Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期112-122,共11页
Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model sl... Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model slope was made of cement mortar.Some artificial cracks perpendicular to the block column were prefabricated.Strain gages,displacement gages,and high-speed camera measurements were employed to monitor the deformation and failure processes of the model slope.The centrifuge test results show that the block toppling evolution can be divided into seven stages,i.e.layer compression,formation of major tensile crack,reverse bending of the block column,closure of major tensile crack,strong bending of the block column,formation of failure zone,and complete failure.Block toppling is characterized by sudden large deformation and occurs in stages.The wedge-shaped cracks in the model incline towards the slope.Experimental observations show that block toppling is mainly caused by bending failure rather than by shear failure.The tensile strength also plays a key factor in the evolution of block toppling.The simulation results from discrete element method(DEM)is in line with the testing results.Tensile stress exists at the backside of rock column during toppling deformation.Stress concentration results in the fragmented rock column and its degree is the most significant at the slope toe. 展开更多
关键词 Block toppling CENTRIFUGE Anti-dip slope Failure mechanism Discrete element method
下载PDF
A method to interpret fracture aperture of rock slope using adaptive shape and unmanned aerial vehicle multi-angle nap-of-the-object photogrammetry 被引量:1
2
作者 Mingyu Zhao Shengyuan Song +3 位作者 Fengyan Wang Chun Zhu Dianze Liu Sicong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期924-941,共18页
The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ... The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance. 展开更多
关键词 Unmanned aerial vehicle(UAV) PHOTOGRAMMETRY High-steep rock slope Fracture aperture Interval effect Size effect Parameter interpretation
下载PDF
Large-scale model testing of high-pressure grouting reinforcement for bedding slope with rapid-setting polyurethane
3
作者 ZHANG Zhichao TANG Xuefeng +2 位作者 LIU Kan YE Longzhen HE Xiang 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3083-3093,共11页
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal... Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides. 展开更多
关键词 POLYURETHANE Bedding slope GROUTING slope protection Large-scale model test
下载PDF
Effects of freeze-thaw cycles on sandstone in sunny and shady slopes
4
作者 Dian Xiao Xiaoyan Zhao +3 位作者 Corrado Fidelibus Roberto Tomás Qiu Lu Hongwei Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2503-2515,共13页
A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering beha... A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering behavior of rocks.In this paper,an investigation of the degradation of petrophysical characteristics of sandstone specimens subjected to FT cycle tests to simulate the sunny-shady slope effects is presented.To this aim,non-destructive and repeatable testing techniques including weight,ultrasonic waves,and nuclear magnetic resonance methods on standard specimens were performed.For the sunny slope specimens,accompanied by the enlargement of small pores,100 FT cycles caused a significant decrease in P-wave velocity with an average of 23%,but a consistent rise of 0.18%in mass loss,34%in porosity,67%in pore geometrical mean radius,and a remarkable 14.5-fold increase in permeability.However,slight changes with some abnormal trends in physical parameters of the shady slope specimens were observed during FT cycling,which can be attributed to superficial granular disaggregation and pore throat obstruction.Thermal shocks enhance rock weathering on sunny slopes during FT cycles,while FT weathering on shady slopes is restricted to the small pores and the superficial cover.These two factors are primarily responsible for the differences in FT weathering intensity between sunny and shady slopes.The conclusions derived from the interpretation of the experimental results may provide theoretical guidance for the design of slope-failure prevention measures and the selection of transportation routes in cold mountainous regions. 展开更多
关键词 Sunny-shady slope Freeze and thaw Pore structure Tight rocks Talus slope Cold regions
下载PDF
Large-scale toppling slope under water level fluctuation of reservoir:A case of Yunnan Province,China
5
作者 Leilei Jin Yufeng Wei +3 位作者 Fei Ye Wenxi Fu Jianfeng Liu Shuwu Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3034-3046,共13页
Landslides induced by reservoir inundation are common in Southwest China,negatively influencing hydropower stations.TheWunonglong hydropower station dam was constructed in the upper reaches of the Lancang River,accord... Landslides induced by reservoir inundation are common in Southwest China,negatively influencing hydropower stations.TheWunonglong hydropower station dam was constructed in the upper reaches of the Lancang River,accordingly causing the water level at the Lajinshengu slope to increase by 30 m.A tension crack with a visible depth of 8 m was observed in the upper sector of the Lajinshengu slope after reservoir impoundment for 170 d.In the following days,numerous cracks appeared on the surface of the slope,and the maximum displacement of the slope reached 3.22 m.Then,a large-scale active deformation body within the Lajinshengu slope formed with an area of 2.62×10^(5)m^(2)and a volume of 1.65×10^(7)m^(3).Detailed field investigations,on-site monitoring,and centrifugal model tests were carried out to analyze the surface features,deformation characteristics,and failure mechanism of the Lajinshengu slope.The results show that the slope is an ancient landslide,divided into two parts(i.e.zone A and zone B)by the gully.Zone B is a traction landslide caused by the displacement of zone A.The longterm inundation weakens the soft rock at the slope foot,intensifying the toppling of bedrock and consequently triggering the sliding of the overburden in zone A.The failure mode of the Lajinshengu slope is a typical case of toppling-sliding failure,and the underlying rock toppling drives the overlying sliding.In addition,early identification methods for toppling deformation covered by overburdened soil were proposed based on monitoring data and deformation signs. 展开更多
关键词 Lajinshengu slope Reservoir impoundment Early identification Failure mechanism Toppling-sliding slope failure mode
下载PDF
Influence of joint spacing and rock characteristics on the toppling stability of cut rock slope through a simplified limit equilibrium method
6
作者 ZHANG Xue-peng JIANG Yu-jing +6 位作者 DU Yan WANG Ke-peng CAI Yue WANG Xing-da SU Hang GOLSANAMI Naser LIU Bao-guo 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2694-2702,共9页
Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a... Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a cutting slope occurred in a hydropower station in Kyushu,Japan illustrates that the joint characteristic played a significant role in the occurrence of rock slope tipping failure.Thus,in order to consider the mechanical properties of jointed rock mass and the influence of geometric conditions,a simplified analytical approach based on the limit equilibrium method for modeling the flexural toppling of cut rock slopes is proposed to consider the influence of the mechanical properties and geometry condition of jointed rock mass.The theoretical solution is compared with the numerical solution taking Kyushu Hydropower Station in Japan as one case,and it is found that the theoretical solution obtained by the simplified analysis method is consistent with the numerical analytical solution,thus verifying the accuracy of the simplified method.Meanwhile,the Goodman-Bray approach conventionally used in engineering practice is improved according to the analytical results.The results show that the allowable slope angle may be obtained by the improved Goodman-Bray approach considering the joint spacing,the joint frictional angle and the tensile strength of rock mass together. 展开更多
关键词 slope stability flexural toppling rock slope simplified limit equilibrium method
下载PDF
Modified Sadowski formula-based model for the slope shape amplification effect under multistage slope blasting vibration
7
作者 Xiaogang Wu Mingyang Wang +2 位作者 Hao Lu Yongjun Zhang Wen Nie 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期631-641,共11页
Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainl... Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainly focuses on blast center distance but neglects the amplification effect of blasting vibration waves by terraced terrain,from which the calculated blasting vibration velocities are smaller than the actual values,affecting the safety of the project.To address this issue,our model introduces the influences of slope and time into Sadowski formula to measure safety through blast vibration displacement.In the northern section of the open-pit quartz mine in Jinchang City,Gansu Province,China,the data of a continuous blasting slope project are referred to.Our findings reveal a noticeable vibration amplification effect during blasting when a multi-stage slope platform undergoes a sudden cross-sectional change near the upper overhanging surface.The amplification vibration coefficient increases with height,while vibration waves within rocks decrease from bottom to top.Conversely,platforms without distinct crosssectional changes exhibit no pronounced amplification during blasting.In addition,the vibration intensity decreases with distance as the rock height difference change propagates.The results obtained by the proposed blast vibration displacement equation incorporating slope shape influence closely agree with real-world scenarios.According to Pearson correlation coefficient(PPMCC)analysis,the average accuracy rate of our model is 88.84%,which exceeds the conventional Sadowski formula(46.92%). 展开更多
关键词 Multistage slope slope shape influence factor Continuous blasting Sadowski formula Amplification effect
下载PDF
Limit load and failure mechanisms of a vertical Hoek-Brown rock slope
8
作者 Jim Shiau Warayut Dokduea +1 位作者 Suraparb Keawsawasvong Pitthaya Jamsawang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1106-1111,共6页
The problem considered in this short note is the limit load determination of a vertical rock slope.The classical limit theorem is employed with the use of adaptive finite elements and nonlinear programming to determin... The problem considered in this short note is the limit load determination of a vertical rock slope.The classical limit theorem is employed with the use of adaptive finite elements and nonlinear programming to determine upper and lower bound limit loads of a Hoek-Brown vertical rock slope.The objective function of the mathematical programming problem is such as to optimize a boundary load,which is known as the limit load,resembling the ultimate bearing capacity of a strip footing.While focusing on the vertical slope,parametric studies are carried out for several dimensionless ratios such as the dimensionless footing distance ratio,the dimensionless height ratio,and the dimensionless rock strength ratio.A comprehensive set of design charts is presented,and failure envelopes shown with the results explained in terms of three identified failure mechanisms,i.e.the face,the toe,and the Prandtl-type failures.These novel results can be used with great confidence in design practice,in particularly noting that the current industry-based design procedures for the presented problem are rarely found. 展开更多
关键词 Bearing capacity Rock slope Vertical slope Finite element limit analysis Hoek-Brown yield criterion
下载PDF
Infiltration,runoff,and slope stability behaviors of infinite slope with macropores based on an improved Green–Ampt model
9
作者 LI Shanghui WU Guoxiong +2 位作者 QUE Yun JIANG Zhenliang CHENG Gaoyun 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2220-2235,共16页
Infiltration–runoff–slope instability mechanism of macropore slope under heavy rainfall is unclear.This paper studied its instability mechanism with an improved Green–Ampt(GA)model considering the dual-porosity(i.e... Infiltration–runoff–slope instability mechanism of macropore slope under heavy rainfall is unclear.This paper studied its instability mechanism with an improved Green–Ampt(GA)model considering the dual-porosity(i.e.,matrix and macropore)and ponding condition,and proposed the infiltration equations,infiltration–runoff coupled model,and safety factor calculation method.Results show that the infiltration processes of macropore slope can be divided into three stages,and the proposed model is rational by a comparative analysis.The wetting front depth of the traditional unsaturated slope is 17.2%larger than that of the macropore slope in the early rainfall stage and 27%smaller than that of the macropore slope in the late rainfall stage.Then,macropores benefit the slope stability in the early rainfall but not in the latter.Macropore flow does not occur initially but becomes pronounced with increasing rainfall duration.The equal depth of the wetting front in the two domains is regarded as the onset criteria of macropore flow.Parameter analysis shows that macropore flow is delayed by increasing proportion of macropore domain(ω_(f)),whereas promoted by increasing ratio of saturated permeability coefficients between the two domains(μ).The increasing trend of ponding depth is sharp at first and then grows slowly.Finally,when rainfall duration is less than 3 h,ωf andμhave no significant effect on the safety factor,whereas it decreases with increasingωf and increases with increasingμunder longer duration(≥3 h).With the increase ofω_(f),the slope maximum instability time advances by 10.5 h,and with the increase ofμ,the slope maximum instability time delays by 3.1 h. 展开更多
关键词 Macropore slope Green–Ampt infiltration model Equivalent wetting front Ponding response time slope stability
下载PDF
Stability analysis of loose accumulation slopes under rainfall:case study of a high‑speed railway in Southwest China
10
作者 Xin Wang Qian Su +2 位作者 Zongyu Zhang Feihu Huang Chenfang He 《Railway Engineering Science》 EI 2024年第1期95-106,共12页
The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability,which can easily induce... The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability,which can easily induce adverse geological disasters under rainfall conditions.To ensure the smooth construction of the high-speed railway and the subsequent safe operation,it is necessary to master the stability evolution process of the loose accumulation slope under rainfall.This article simulates rainfall using the finite element analysis software’s hydromechanical coupling module.The slope stability under various rainfall situations is calculated and analysed based on the strength reduction method.To validate the simulation results,a field monitoring system is established to study the deformation characteristics of the slope under rainfall.The results show that rainfall duration is the key factor affecting slope stability.Given a constant amount of rainfall,the stability of the slope decreases with increasing duration of rainfall.Moreover,when the amount and duration of rainfall are constant,continuous rainfall has a greater impact on slope stability than intermittent rainfall.The setting of the field retaining structures has a significant role in improving slope stability.The field monitoring data show that the slope is in the initial deformation stage and has good stability,which verifies the rationality of the numerical simulation method.The research results can provide some references for understanding the influence of rainfall on the stability of loose accumulation slopes along high-speed railways and establishing a monitoring system. 展开更多
关键词 High-speed railway Loose accumulation slope slope stability analysis Rainfall effect Strength reduction
下载PDF
Slope-climbing of cropland and its effects in China
11
作者 CHEN Wanxu XIE Youping +4 位作者 YUAN Jintao ZENG Jie YANG Liyan GU Tianci LEI Fan 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2754-2769,共16页
In recent decades,the spatio-temporal patterns of China’s croplands have been reshaped by disturbances from anthropogenic activities,with complex changes in the topographic characteristics of croplands.Slope-climbing... In recent decades,the spatio-temporal patterns of China’s croplands have been reshaped by disturbances from anthropogenic activities,with complex changes in the topographic characteristics of croplands.Slope-climbing of croplands(SCCL)is an important issue that threatens sustainable agricultural development.While providing land with prominent location advantages,SCCL weakens the water and fertilizer retention capacity for cropland,intensifies various geological disasters,and adversely affects the ecological environment and food yield of these croplands.It is crucial to determine the spatio-temporal variation features and effects of SCCL in China to formulate more accurate cropland protection policies and to maintain food security;however,the current lack of relevant studies is detrimental for capturing trends in cropland resources and sustainable cropland use.In this study,we constructed a multi-scale slope spectrum for cropland and total terrain to explore the spatial differences and trends of SCCL from a three-dimensional view.We evaluated the natural and socioeconomic effects of SCCL in China from multiple perspectives.Results indicate that the proportion of cropland with slopes below 2°,5°,and 6°in China decreased by 0.43%,0.47%,and 0.50%from 1980 to 2020,respectively.SCCL became apparent during 1980-1990 and 2010-2020,especially over the recent decade.The cropland climbing index(CCI)and upper limited slope change(ULSC)to measure the spatio-temporal pattern of SCCL were 0.99%and 1.17°,respectively,during 2010-2020.At the agricultural regional scale,the SCCL was also concentrated in 1980-1990 and 2010-2020,and it is more pronounced in the southern areas.The proportion of provinces and prefecture-level cities with high-intensity SCCL during 1980-2020 were 87.10%and 49.73%,respectively.SCCL was comparatively more pronounced and broader from 2010 to 2020.During this period,17.84%of prefecture-level cities had no SCCL,and the average CCI for all prefecture-level cities peaked at 1.62%.In this study,we also evaluated the pros and cons of SCCL and provided targeted suggestions for decision makers and farmers to refine cropland protection policy systems and further develop the sustainable use of croplands. 展开更多
关键词 Croplands slope spectrum slope-climbing Three-dimensional perspective MULTI-SCALE China
下载PDF
44%of steep slope cropland in Europe vulnerable to drought
12
作者 Wendi Wang Eugenio Straffelini Paolo Tarolli 《Geography and Sustainability》 CSCD 2024年第1期89-95,共7页
Steep-slope cropland plays a vital role in food production,economic development,ecosystem diversity,and Eu-ropean cultural heritage.However,these systems are susceptible to extreme weather events.The 2022 summer droug... Steep-slope cropland plays a vital role in food production,economic development,ecosystem diversity,and Eu-ropean cultural heritage.However,these systems are susceptible to extreme weather events.The 2022 summer drought significantly impacted European agriculture,but the specific effects on steep-slope crops remain uncer-tain.Clarifying this is essential for comprehending similar future events and for implementing effective water management strategies to ensure the sustainability of steep-slope agriculture and associated ecosystem services.This study quantitatively analyzes the spatial distribution of twelve major European steep-slope(>12%)crops and assesses agricultural drought severity during the 2022 events using open-access spatial data.The satellite-based Vegetation Health Index(VHI)is utilized to identify critical hotspots.Results show that olive grove is the most widespread crop in steep slope agriculture(34%of total area),followed by wheat(24%),maize(16%),and vineyard(11%).Almost half of the steep-slope agriculture in Europe suffered drought during summer 2022.Vineyards were hardest affected at 79%,primarily in northern Portugal,northern Spain,southern France,and central Italy.Sunflowers followed at 62%,mainly in Spain,central Italy,southern France,and northern Roma-nia.Olive groves ranked third at 59%,with the most impact in northern Portugal,southern and central Spain,and southern Italy.Maize was also significantly affected at 54%.In this paper,we therefore highlight the need to increase steep-slope agriculture resilience by improving water management and promoting sustainable land practices. 展开更多
关键词 DROUGHT Steep slope cropland EUROPE SUSTAINABILITY
下载PDF
Classification and rating of disintegrated dolomite strata for slope stability analysis
13
作者 Wenlian Liu Xinyue Gong +3 位作者 Jiaxing Dong Hanhua Xu Peixuan Dai Shengwei Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2552-2562,共11页
Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gainin... Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gaining increasing prominence.This is primarily due to their unique properties,including low strength and loose structure.Current methods for evaluating slope stability,such as basic quality(BQ)and slope stability probability classification(SSPC),do not adequately account for the poor integrity and structural fragmentation characteristic of disintegrated dolomite.To address this challenge,an analysis of the applicability of the limit equilibrium method(LEM),BQ,and SSPC methods was conducted on eight disintegrated dolomite slopes located in Baoshan,Southwest China.However,conflicting results were obtained.Therefore,this paper introduces a novel method,SMRDDS,to provide rapid and accurate assessment of disintegrated dolomite slope stability.This method incorporates parameters such as disintegrated grade,joint state,groundwater conditions,and excavation methods.The findings reveal that six slopes exhibit stability,while two are considered partially unstable.Notably,the proposed method demonstrates a closer match with the actual conditions and is more time-efficient compared with the BQ and SSPC methods.However,due to the limited research on disintegrated dolomite slopes,the results of the SMRDDS method tend to be conservative as a safety precaution.In conclusion,the SMRDDS method can quickly evaluate the current situation of disintegrated dolomite slopes in the field.This contributes significantly to disaster risk reduction for disintegrated dolomite slopes. 展开更多
关键词 Disintegrated dolomite slope Basic quality(BQ) slope stability probability classification (SSPC) Rock mass quality classification Limit equilibrium method(LEM)
下载PDF
Hybrid response surface method for system reliability analysis of pilereinforced slopes
14
作者 Xiangrui Duan Jie Zhang +2 位作者 Leilei Liu Jinzheng Hu Yadong Xue 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3395-3406,共12页
To consider the complex soil-structure interaction in a pile-slope system,it is necessary to analyze the performance of pile-slope systems based on a three-dimensional(3D)numerical model.Reliability analysis of a pile... To consider the complex soil-structure interaction in a pile-slope system,it is necessary to analyze the performance of pile-slope systems based on a three-dimensional(3D)numerical model.Reliability analysis of a pile-slope system based on 3D numerical modeling is very challenging because it is computationally expensive and the performance function of the pile failure mode is only defined in the safe domain of soil stability.In this paper,an efficient hybrid response surface method is suggested to study the system reliability of pile-reinforced slopes,where the support vector machine and the Kriging model are used to approximate performance functions of soil failure and pile failure,respectively.The versatility of the suggested method is illustrated in detail with an example.For the example examined in this paper,it is found that the pile failure can significantly contribute to system failure,and the reinforcement ratio can effectively reduce the probability of pile failure.There exists a critical reinforcement ratio beyond which the system failure probability is not sensitive to the reinforcement ratio.The pile spacing affects both the probabilities of soil failure and pile failure of the pile-reinforced slope.There exists an optimal location and an optimal length for the stabilizing piles. 展开更多
关键词 slope PILES System reliability Support vector machine Ordinary kriging
下载PDF
Evolution model and failure mechanisms of rainfall-induced cracked red clay slopes:insights from Xinshao County,China
15
作者 JIAO Weizhi ZHANG Ming +4 位作者 LI Peng XIE Junjin PANG Haisong LIU Fuxing YANG Long 《Journal of Mountain Science》 SCIE CSCD 2024年第3期867-881,共15页
Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary pro... Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary process of red clay slopes and their connection to failure mechanisms is still poorly understood.A comprehensive approach integrating field investigation,laboratory tests,and numerical simulations was conducted to study the 168 red clay landslides in Xinshao County,China.The results show that red clay is prone to forming cracks at high moisture content due to its low swelling and high shrinkage properties.The failure mode of red clay slopes can be summarized in three stages:crack generation,slope excavation,and slope failure.Furthermore,the retrospective analysis and numerical simulations of the typical landslide in Guanchong indicated that intense rainfall primarily impacts the shallow layer of soil within approximately 0.5 m on the intact slope.However,cracks change the pattern of rainfall infiltration in the slope.Rainwater infiltrates rapidly through the preferential channels induced by the cracks rather than uniformly and slowly from the slope surface.This results in a significant increase in both the depth of infiltration and the saturated zone area of the cracked slope,reaching 3.8 m and 36.2 m^(2),respectively.Consequently,the factor of safety of the slope decreases by 13.4%compared to the intact slope,ultimately triggering landslides.This study can provide valuable insights into understanding the failure mechanisms of red clay slopes in China and other regions with similar geological settings. 展开更多
关键词 Red clay slopes Cracks Preferential flow Failure mechanism
下载PDF
Bio-cementation for tidal erosion resistance improvement of foreshore slopes based on microbially induced magnesium and calcium precipitation
16
作者 Xiaohao Sun Junjie Wang +3 位作者 Hengxing Wang Linchang Miao Ziming Cao Linyu Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1696-1708,共13页
In most coastal and estuarine areas,tides easily cause surface erosion and even slope failure,resulting in severe land losses,deterioration of coastal infrastructure,and increased floods.The bio-cementation technique ... In most coastal and estuarine areas,tides easily cause surface erosion and even slope failure,resulting in severe land losses,deterioration of coastal infrastructure,and increased floods.The bio-cementation technique has been previously demonstrated to effectively improve the erosion resistance of slopes.Seawater contains magnesium ions(Mg^(2+))with a higher concentration than calcium ions(Ca^(2+));therefore,Mg^(2+)and Ca^(2+)were used together for bio-cementation in this study at various Mg^(2+)/Ca^(2+)ratios as the microbially induced magnesium and calcium precipitation(MIMCP)treatment.Slope angles,surface strengths,precipitation contents,major phases,and microscopic characteristics of precipitation were used to evaluate the treatment effects.Results showed that the MIMCP treatment markedly enhanced the erosion resistance of slopes.Decreased Mg^(2+)/Ca^(2+)ratios resulted in a smaller change in angles and fewer soil losses,especially the Mg^(2+)concentration below 0.2 M.The decreased Mg^(2+)/Ca^(2+)ratio achieved increased precipitation contents,which contributed to better erosion resistance and higher surface strengths.Additionally,the production of aragonite would benefit from elevated Mg^(2+)concentrations and a higher Ca^(2+)concentration led to more nesquehonite in magnesium precipitation crystals.The slopes with an initial angle of 53°had worse erosion resistance than the slopes with an initial angle of 35°,but the Mg^(2+)/Ca^(2+)ratios of 0.2:0.8,0.1:0.9,and 0:1.0 were effective for both slope stabilization and erosion mitigation to a great extent.The results are of great significance for the application of MIMCP to improve erosion resistance of foreshore slopes and the MIMCP technique has promising application potential in marine engineering. 展开更多
关键词 Bio-cementation Erosion resistance Foreshore slope stabilization Magnesium ions Calcium ions
下载PDF
Is Blumensaat Inclination Angle (BIA) and Angle between Blumensaat line and Tibal Slope (BATS) a Risk Factor for ACL Injury?
17
作者 Shri Kapilan Leong Yung Chin Zulkifli Hassan 《Journal of Biosciences and Medicines》 2024年第7期314-324,共11页
Introduction: Femoral and tibial morphology posted as anatomical risk factors for ACL injuries. Samora et.al found out that a decreased BIA was associated with ACL rupture. Alentorn-Geli et al. found that the angle be... Introduction: Femoral and tibial morphology posted as anatomical risk factors for ACL injuries. Samora et.al found out that a decreased BIA was associated with ACL rupture. Alentorn-Geli et al. found that the angle between the Blumensaat line and the anterior tibial slope (BATS angle) was significantly greater in men with ACL injury. However, other authors were not able to reproduce the similar findings. Our study aimed to determine the Blumensaat inclination angle (BIA) and angle between Blumensaat line and tibial slope (BATS) in patients with or without anterior cruciate ligament injury. We also explored the factors influence them. Method: We elavuated 142 MRI knee done in Hospital Sultan Ismail from January 2017 to November 2020. Study group was patient with ACL injuries, with or without meniscus and cartilage injuries. Control group was patient with no ACL injuries. 57 patients with history of fracture around the knee joint, multiligamentous injuries, inflammatory arthritis and tumour were excluded from the study. We recorded their age, gender, BIA, and BATS angle. BIA and BATS angle were measured in sagittal plane MRI as described by Koji Iswasaki et al. and Alentorn-Geli et al. Result: 54 patients were in study group and 31 years in control group. The mean age for study group was 32.7 (8.95) year old, and for control group was 42.5 (14.54). The mean BIA for study group was 36.20 (4.542) degree, and control group was 37.25 (4.941). The mean BATS for study group was 36.33 (5.78) degree, and control group was 25.26 (6.047) degree. BIA and BATS angle did not differ in both groups, age and gender. Conclusion: Our study did not show BIA and BATS angle as an anatomical risk factor for ACL injuries. Age and gender did not affect these angles. 展开更多
关键词 BIA Anterior Tibial slope ACL
下载PDF
Stability assessment of tree ring growth of Pinus armandii Franch in response to climate change based on slope directions at the Lubanling in the Funiu Mountains,China
18
作者 Jinkuan Li Jianfeng Peng +4 位作者 Xiaoxu Wei Meng Peng Xuan Li Yameng Liu Jiaxin Li 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期197-208,共12页
Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and ... Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and treering chronologies developed on northern and western slopes from the Lubanling in the Funiu Mountains.Correlation analyses showed that two chronologies were mainly limited by temperatures in the previous June–August and the combination of temperatures and moisture in the current May–July.The difference of the climate response to slopes was small but not negligible.Radial growth of the LBL01 site on the northern slope was affected by the combined maximum and minimum temperatures,while that of the LBL02 site was affected by maximum temperatures.With regards to moisture,radial growth of the trees on the north slope was influenced by the relative humidity in the current May–July,while on the western slope,it was affected by the relative humidity in the previous June–August,the current May–July and the precipitation in the current May–July.With the change in climate,the effects of the main limiting factors on growth on different slopes were visible to a certain extent,but the differences in response of trees on different slopes gradually decreased,which might be caused by factors such as different slope directions and the change in diurnal temperature range.These results may provide information for forest protection and ecological construction in this region,and a scientific reference for future climate reconstruction. 展开更多
关键词 Tree ring width Lubanling Pinus armandii Franch slope direction Climate response
下载PDF
Stability assessment of tree ring growth of Pinus armandii Franch in response to climate change based on slope directions at the Lubanling in the Funiu Mountains,China
19
作者 Jinkuan Li Jianfeng Peng +4 位作者 Xiaoxu Wei Meng Peng Xuan Li Yameng Liu Jiaxin Li 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期87-98,共12页
Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and ... Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and tree-ring chronologies developed on northern and western slopes from the Lubanling in the Funiu Mountains.Correlation analyses showed that two chronologies were mainly limited by temperatures in the previous June-August and the com-bination of temperatures and moisture in the current May-July.The difference of the climate response to slopes was small but not negligible.Radial growth of the LBLO1 site on the northern slope was affected by the combined maximum and minimum temperatures,while that of the LBLO2 site was affected by maximum temperatures.With regards to moisture,radial growth of the trees on the north slope was influenced by the relative humidity in the current May-July,while on the western slope,it was affected by the relative humidity in the previous June-August,the current May-July and the precipitation in the current May-July.With the change in climate,the effects of the main limiting factors on growth on different slopes were visible to a certain extent,but the differences in response of trees on different slopes gradually decreased,which might be caused by factors such as different slope directions and the change in diurnal temperature range.These results may provide information for forest protection and ecological construction in this region,and a scientific reference for future climate reconstruction. 展开更多
关键词 Tree ring width Lubanling Pinus armandi Franch slope direction Climate response
下载PDF
An approach for determination of lateral limit angle in kinematic planar sliding analysis for rock slopes
20
作者 Xiaojuan Yang Jie Hu +1 位作者 Honglei Sun Jun Zheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1305-1314,共10页
Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar slid... Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar sliding kinematic analysis is significantly influenced by the value assigned to the lateral limit angleγlim.However,the assignment ofγlim is currently used generally based on an empirical criterion.This study aims to propose an approach for determining the value ofγlim in deterministic and probabilistic kinematic planar sliding analysis.A new perspective is presented to reveal thatγlim essentially influences the probability of forming a potential planar sliding block.The procedure to calculate this probability is introduced using the block theory method.It is found that the probability is correlated with the number of discontinuity sets presented in rock masses.Thus,different values ofγlim for rock masses with different sets of discontinuities are recommended in both probabilistic and deterministic planar sliding kinematic analyses;whereas a fixed value ofγlim is commonly assigned to different types of rock masses in traditional method.Finally,an engineering case was used to compare the proposed and traditional kinematic analysis methods.The error rates of the traditional method vary from 45%to 119%,while that of the proposed method ranges between 1%and 17%.Therefore,it is likely that the proposed method is superior to the traditional one. 展开更多
关键词 Kinematic analysis Block theory Planar sliding Lateral limit angle Rock slope
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部