Using the thin film brick-wall model and WKB approximation, the entropy of the Dirac field in the non-stationary and slowly changing Reissner-Nordstrom (R-N) black hole is calculated. The result shows that the entropy...Using the thin film brick-wall model and WKB approximation, the entropy of the Dirac field in the non-stationary and slowly changing Reissner-Nordstrom (R-N) black hole is calculated. The result shows that the entropy of the R-N black hole is still proportional to its surface area if we choose proper cut-off.展开更多
The late-time tail of massive Dirac fields in Kerr spacetime is investigated by using the black hole Green function. It is shown that in the intermediate late times there are two kinds of new properties. The one is th...The late-time tail of massive Dirac fields in Kerr spacetime is investigated by using the black hole Green function. It is shown that in the intermediate late times there are two kinds of new properties. The one is that the asymptotic behaviour of the massive Dirac fields is dominated by a decaying tail without any oscillation, which is different from the oscillatory decaying tails of the massive scalar field; the other is that the dumping exponent for the massive Dirac field depends not only on the multiple number of the wave mode and the mass of the Dirac particle but also on the rotating parameter of the black hole.展开更多
Gravitational interactions of Dirac field are studied in this paper. Based on gauge principle, quantum gauge theory of gravity, which is perturbatively renormalizable, is formulated in the Minkowski space-time. In qua...Gravitational interactions of Dirac field are studied in this paper. Based on gauge principle, quantum gauge theory of gravity, which is perturbatively renormalizable, is formulated in the Minkowski space-time. In quantum gauge theory of gravity, gravity is treated as a kind of fundamental interactions, which is transmitted by gravitational gauge field, and Dirac field couples to gravitational field through gravitational gauge covariant derivative. Based on this theory, we can easily explain gravitational phase effect, which has already been detected by COW experiment.展开更多
Dirac's method which itself is for constrained Boson fields and particle systems is followed and developed to treat Dirac fields in light-front coordinates.
In the present paper we consider the case of a Dirac field in a finite time domain and coupled to an external field. We decompose the field and its Hamiltonian in terms of creation and annihilation operators and path ...In the present paper we consider the case of a Dirac field in a finite time domain and coupled to an external field. We decompose the field and its Hamiltonian in terms of creation and annihilation operators and path integrate it via Grassmannian variables techniques. In that way we obtain its finite time domain Green function. We use it in the perturbative study of the interaction of Dirac particles with classical electromagnetic waves.展开更多
This work presents new round of the author’s pursuit for consistent description of the finite sized objects in classical and quantum field theory. Current paper lays out an adequate mathematical background for this q...This work presents new round of the author’s pursuit for consistent description of the finite sized objects in classical and quantum field theory. Current paper lays out an adequate mathematical background for this quest. A novel framework of the matter-induced physical affine geometry is developed. Within this framework, (1) an intrinsic nonlinearity of the Dirac equation becomes self-explanatory;(2) the spherical symmetry of an isolated localized object is of dynamic origin;(3) the auto-localization is a trivial consequence of nonlinearity and wave nature of the Dirac field;(4) localized objects are split into two major categories that are clearly associated with the positive and negative charges;(5) of these, only the former can be stable as isolated objects, which explains the global charge asymmetry of the matter observed in Nature. In the second paper, the nonlinear Dirac equation is written down explicitly. It is solved in one-body approximation (in absence of external fields). Its two analytic solutions unequivocally are positive (stable) and negative (unstable) isolated charges. From the author’s current perspective, the so for obtained results must be developed further and applied to various practical and fundamental problems in particle and nuclear physics, and also in cosmology.展开更多
Two-dimensional materials with Dirac cones have significant applications in photoelectric technology. The origin and manipulation of multiple Dirac cones need to be better understood. By first-principle calculations, ...Two-dimensional materials with Dirac cones have significant applications in photoelectric technology. The origin and manipulation of multiple Dirac cones need to be better understood. By first-principle calculations, we study the influence of external fields on the electronic structure of the hexagonal CrB4 sheet with double nonequivalent Dirac cones. Our results show that the two cones are not sensitive to tensile strain and out-of-plane electric field, but present obviously different behaviors under the in-plane external electric field(along the B-B direction), i.e., one cone holds while the other vanishes with a gap opening. More interestingly, a new nonequivalent cone emerges under a proper in-plane electric field. We also discuss the origin of the cones in CrB4 sheet. Our study provides a new method on how to obtain Dirac cones by the external field manipulation, which may motivate potential applications in nanoelectronics.展开更多
The exchange field effects on topological Dirac semimetal(DSM) films are discussed in this article. A topological phase transition can be controlled by tuning the exchange field together with the quantum confinement...The exchange field effects on topological Dirac semimetal(DSM) films are discussed in this article. A topological phase transition can be controlled by tuning the exchange field together with the quantum confinement effects. What is more interesting is that the system can transit into the quantum anomalous Hall(QAH) state from the topologically trivial state(Z2 = 0) or from the topologically nontrivial state(Z2 = 1), depending on the thickness of the DSM films. This provides a useful mechanism to realize the QAH state from the DSM.展开更多
Schrödinger equation for pair of two massless Dirac particles when magnetic field is applied in Landau gauge is solved exactly. In this case, the separation of center of mass and relative motion is obtained. L...Schrödinger equation for pair of two massless Dirac particles when magnetic field is applied in Landau gauge is solved exactly. In this case, the separation of center of mass and relative motion is obtained. Landau quantization ε = ±B/?l for pair of two Majorana fermions coupled via a Coulomb potential from massless chiral Dirac equation in cylindric coordinate is found. The root ambiguity in energy spectrum leads into Landau quantization for bielectron, when the states in which the one simultaneously exists are allowed. The tachyon solution with imaginary energy in Cooper problem (ε 2 < 0) is found. The continuum symmetry of Dirac equation allows perfect pairing between electron Fermi spheres when magnetic field is applied in Landau gauge creating a Cooper pair.展开更多
Low-frequency flicker noise is usually associated with material defects or imperfection of fabrication procedure. Up to now, there is only very limited knowledge about flicker noise of the topological insulator, whose...Low-frequency flicker noise is usually associated with material defects or imperfection of fabrication procedure. Up to now, there is only very limited knowledge about flicker noise of the topological insulator, whose topologically protected conducting surface is theoretically immune to back scattering. To suppress the bulk conductivity we synthesize antimony doped Bi2Se3 nanowires and conduct transport measurements at cryogenic temperatures. The low-frequency current noise measurement shows that the noise amplitude at the high-drain current regime can be described by Hooge's empirical relationship, while the noise level is significantly lower than that predicted by Hooge's model near the Dirac point. Furthermore, different frequency responses of noise power spectrum density for specific drain currents at the low drain current regime indicate the complex origin of noise sources of topological insulator.展开更多
A real version of the Dirac equation is derived and its coupling to the electromagnetic field considered. First the four-component real Majorana equation is briefly discussed. Then the complex Dirac equation including...A real version of the Dirac equation is derived and its coupling to the electromagnetic field considered. First the four-component real Majorana equation is briefly discussed. Then the complex Dirac equation including an electromagnetic field will be written as an eight-component real spinor equation by separating it into its real and imaginary parts. Through this decomposition, what becomes obvious is the way in which the electromagnetic field couples to charged fermions (electron and positron) when being described by real spinor fields. Thus, contrary to common expectation, charged fermions can also be described by a real Dirac equation if they are considered as a doublet related to the SO(2) symmetry group, which enables a matrix coupling to the electromagnetic field and corresponds to the usual U(1) gauge symmetry of the standard Dirac equation.展开更多
We have proposed previously a method for constructing self-conjugate Hamiltonians Hh in the h-representation with a flat scalar product to describe the dynamics of Dirac particles in arbitrary gravitational fields. In...We have proposed previously a method for constructing self-conjugate Hamiltonians Hh in the h-representation with a flat scalar product to describe the dynamics of Dirac particles in arbitrary gravitational fields. In this paper, we prove that, for block-diagonal metrics, the Hamiltonians Hh can be obtained, in particular, using “reduced” parts of Dirac Hamiltonians, i.e. expressions for Dirac Hamiltonians derived using tetrad vectors in the Schwinger gauge without or with a few summands with bispinor connectivities. Based on these results, we propose a modified method for constructing Hamiltonians in the h-representation with a significantly smaller amount of required calculations. Using this method, here we for the first time find self-conjugate Hamiltonians for a number of metrics, including the Kerr metric in the Boyer-Lindquist coordinates, the Eddington-Finkelstein, Finkelstein-Lemaitre, Kruskal, Clifford torus metrics and for non-stationary metrics of open and spatially flat Friedmann models.展开更多
We obtain a lower bound on the spacetime-weighted average of the energy density for the scalar field in four-dimensional flat spacetime. The bound takes the form of a quantum inequality. The inequality does not rely o...We obtain a lower bound on the spacetime-weighted average of the energy density for the scalar field in four-dimensional flat spacetime. The bound takes the form of a quantum inequality. The inequality does not rely on the quantum state and its form is only related to the weights, namely the spacetime sampling functions which are assumed to be smooth, positive and compactly supported. It is found that the inequality is just equal to the temporal quantum energy inequality. When the characteristic length of the temporal sampling function tends to zero, the lower bound becomes divergent. This is consistent with the fact that the spatial restriction on negative energy density does not exist in four-dimensional spacetime.展开更多
Using the third-order WKB approximation, we evaluate the quasinormal frequencies of massless Dirac field perturbation around a Reissner Nordstrom black hole surrounded by a static and spherically symmetric quintessenc...Using the third-order WKB approximation, we evaluate the quasinormal frequencies of massless Dirac field perturbation around a Reissner Nordstrom black hole surrounded by a static and spherically symmetric quintessence. We study the variation of quasinormal frequencies with the quintessential state parameter ε, the total angular momentum number |k|, the charge Q, and the overtone number n changes, respectively. Moreover, from the results we obtained, we find that the massless Dirac field damps more slowly due to the presence of quintessence.展开更多
This paper continues the author’s work [1], where a new framework of the matter-induced physical geometry was built and an intrinsic nonlinearity of the Dirac equation was discovered. Here, the nonlinear Dirac equati...This paper continues the author’s work [1], where a new framework of the matter-induced physical geometry was built and an intrinsic nonlinearity of the Dirac equation was discovered. Here, the nonlinear Dirac equation is solved and the localized configurations are found analytically. Of the two possible types of the potentially stationary localized configurations of the Dirac field, only one is stable with respect to the action of an external field and it corresponds to a positive charge. A connection with the global charge asymmetry of matter in the Universe and with the recently observed excess of the cosmic positrons is discussed.展开更多
文摘Using the thin film brick-wall model and WKB approximation, the entropy of the Dirac field in the non-stationary and slowly changing Reissner-Nordstrom (R-N) black hole is calculated. The result shows that the entropy of the R-N black hole is still proportional to its surface area if we choose proper cut-off.
基金Project supported by the National Natural Science Foundation of China (Grant No 10473004), the FANEDD (Grant No 200317), the SRFDP (Grant No 20040542003), the Hunan Provincial Natural Science Foundation of China (Grant No 05JJ0001).
文摘The late-time tail of massive Dirac fields in Kerr spacetime is investigated by using the black hole Green function. It is shown that in the intermediate late times there are two kinds of new properties. The one is that the asymptotic behaviour of the massive Dirac fields is dominated by a decaying tail without any oscillation, which is different from the oscillatory decaying tails of the massive scalar field; the other is that the dumping exponent for the massive Dirac field depends not only on the multiple number of the wave mode and the mass of the Dirac particle but also on the rotating parameter of the black hole.
文摘Gravitational interactions of Dirac field are studied in this paper. Based on gauge principle, quantum gauge theory of gravity, which is perturbatively renormalizable, is formulated in the Minkowski space-time. In quantum gauge theory of gravity, gravity is treated as a kind of fundamental interactions, which is transmitted by gravitational gauge field, and Dirac field couples to gravitational field through gravitational gauge covariant derivative. Based on this theory, we can easily explain gravitational phase effect, which has already been detected by COW experiment.
文摘Dirac's method which itself is for constrained Boson fields and particle systems is followed and developed to treat Dirac fields in light-front coordinates.
文摘In the present paper we consider the case of a Dirac field in a finite time domain and coupled to an external field. We decompose the field and its Hamiltonian in terms of creation and annihilation operators and path integrate it via Grassmannian variables techniques. In that way we obtain its finite time domain Green function. We use it in the perturbative study of the interaction of Dirac particles with classical electromagnetic waves.
文摘This work presents new round of the author’s pursuit for consistent description of the finite sized objects in classical and quantum field theory. Current paper lays out an adequate mathematical background for this quest. A novel framework of the matter-induced physical affine geometry is developed. Within this framework, (1) an intrinsic nonlinearity of the Dirac equation becomes self-explanatory;(2) the spherical symmetry of an isolated localized object is of dynamic origin;(3) the auto-localization is a trivial consequence of nonlinearity and wave nature of the Dirac field;(4) localized objects are split into two major categories that are clearly associated with the positive and negative charges;(5) of these, only the former can be stable as isolated objects, which explains the global charge asymmetry of the matter observed in Nature. In the second paper, the nonlinear Dirac equation is written down explicitly. It is solved in one-body approximation (in absence of external fields). Its two analytic solutions unequivocally are positive (stable) and negative (unstable) isolated charges. From the author’s current perspective, the so for obtained results must be developed further and applied to various practical and fundamental problems in particle and nuclear physics, and also in cosmology.
基金Project supported by the National Natural Sciences Foundation of China(Grant Nos.11704294 and 11504281)the Natural Science Foundation of Hubei Province,China(Grant No.2016CFB586)the Fundamental Research Funds for the Central Universities,China(Grant Nos.2017IVA078,2018IVB017,2017IB013,2018IB009,and 2018IB011)
文摘Two-dimensional materials with Dirac cones have significant applications in photoelectric technology. The origin and manipulation of multiple Dirac cones need to be better understood. By first-principle calculations, we study the influence of external fields on the electronic structure of the hexagonal CrB4 sheet with double nonequivalent Dirac cones. Our results show that the two cones are not sensitive to tensile strain and out-of-plane electric field, but present obviously different behaviors under the in-plane external electric field(along the B-B direction), i.e., one cone holds while the other vanishes with a gap opening. More interestingly, a new nonequivalent cone emerges under a proper in-plane electric field. We also discuss the origin of the cones in CrB4 sheet. Our study provides a new method on how to obtain Dirac cones by the external field manipulation, which may motivate potential applications in nanoelectronics.
基金supported by the National Natural Science Foundation of China(Grant No.11574019)
文摘The exchange field effects on topological Dirac semimetal(DSM) films are discussed in this article. A topological phase transition can be controlled by tuning the exchange field together with the quantum confinement effects. What is more interesting is that the system can transit into the quantum anomalous Hall(QAH) state from the topologically trivial state(Z2 = 0) or from the topologically nontrivial state(Z2 = 1), depending on the thickness of the DSM films. This provides a useful mechanism to realize the QAH state from the DSM.
文摘Schrödinger equation for pair of two massless Dirac particles when magnetic field is applied in Landau gauge is solved exactly. In this case, the separation of center of mass and relative motion is obtained. Landau quantization ε = ±B/?l for pair of two Majorana fermions coupled via a Coulomb potential from massless chiral Dirac equation in cylindric coordinate is found. The root ambiguity in energy spectrum leads into Landau quantization for bielectron, when the states in which the one simultaneously exists are allowed. The tachyon solution with imaginary energy in Cooper problem (ε 2 < 0) is found. The continuum symmetry of Dirac equation allows perfect pairing between electron Fermi spheres when magnetic field is applied in Landau gauge creating a Cooper pair.
基金Supported by the National Basic Research Program of China under Grant No 2012CB921703the National Natural Science Foundation of China under Grant Nos 11174357 and 11574379the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB07010300
文摘Low-frequency flicker noise is usually associated with material defects or imperfection of fabrication procedure. Up to now, there is only very limited knowledge about flicker noise of the topological insulator, whose topologically protected conducting surface is theoretically immune to back scattering. To suppress the bulk conductivity we synthesize antimony doped Bi2Se3 nanowires and conduct transport measurements at cryogenic temperatures. The low-frequency current noise measurement shows that the noise amplitude at the high-drain current regime can be described by Hooge's empirical relationship, while the noise level is significantly lower than that predicted by Hooge's model near the Dirac point. Furthermore, different frequency responses of noise power spectrum density for specific drain currents at the low drain current regime indicate the complex origin of noise sources of topological insulator.
文摘A real version of the Dirac equation is derived and its coupling to the electromagnetic field considered. First the four-component real Majorana equation is briefly discussed. Then the complex Dirac equation including an electromagnetic field will be written as an eight-component real spinor equation by separating it into its real and imaginary parts. Through this decomposition, what becomes obvious is the way in which the electromagnetic field couples to charged fermions (electron and positron) when being described by real spinor fields. Thus, contrary to common expectation, charged fermions can also be described by a real Dirac equation if they are considered as a doublet related to the SO(2) symmetry group, which enables a matrix coupling to the electromagnetic field and corresponds to the usual U(1) gauge symmetry of the standard Dirac equation.
文摘We have proposed previously a method for constructing self-conjugate Hamiltonians Hh in the h-representation with a flat scalar product to describe the dynamics of Dirac particles in arbitrary gravitational fields. In this paper, we prove that, for block-diagonal metrics, the Hamiltonians Hh can be obtained, in particular, using “reduced” parts of Dirac Hamiltonians, i.e. expressions for Dirac Hamiltonians derived using tetrad vectors in the Schwinger gauge without or with a few summands with bispinor connectivities. Based on these results, we propose a modified method for constructing Hamiltonians in the h-representation with a significantly smaller amount of required calculations. Using this method, here we for the first time find self-conjugate Hamiltonians for a number of metrics, including the Kerr metric in the Boyer-Lindquist coordinates, the Eddington-Finkelstein, Finkelstein-Lemaitre, Kruskal, Clifford torus metrics and for non-stationary metrics of open and spatially flat Friedmann models.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10375023, 10575035 and 10125521, the Program for NCET (No 04-0784), the Key Project of Chinese Ministry of Education (No 205110), and the National Major State Basic Research and Development Programme of China (G2000077400).
文摘We obtain a lower bound on the spacetime-weighted average of the energy density for the scalar field in four-dimensional flat spacetime. The bound takes the form of a quantum inequality. The inequality does not rely on the quantum state and its form is only related to the weights, namely the spacetime sampling functions which are assumed to be smooth, positive and compactly supported. It is found that the inequality is just equal to the temporal quantum energy inequality. When the characteristic length of the temporal sampling function tends to zero, the lower bound becomes divergent. This is consistent with the fact that the spatial restriction on negative energy density does not exist in four-dimensional spacetime.
基金Supported by the National Natural Science Foundation of China under Grant No. 10573004
文摘Using the third-order WKB approximation, we evaluate the quasinormal frequencies of massless Dirac field perturbation around a Reissner Nordstrom black hole surrounded by a static and spherically symmetric quintessence. We study the variation of quasinormal frequencies with the quintessential state parameter ε, the total angular momentum number |k|, the charge Q, and the overtone number n changes, respectively. Moreover, from the results we obtained, we find that the massless Dirac field damps more slowly due to the presence of quintessence.
文摘This paper continues the author’s work [1], where a new framework of the matter-induced physical geometry was built and an intrinsic nonlinearity of the Dirac equation was discovered. Here, the nonlinear Dirac equation is solved and the localized configurations are found analytically. Of the two possible types of the potentially stationary localized configurations of the Dirac field, only one is stable with respect to the action of an external field and it corresponds to a positive charge. A connection with the global charge asymmetry of matter in the Universe and with the recently observed excess of the cosmic positrons is discussed.