An explicitly solvable model for tunnelling of relativistic spinless particles through a sphere is suggested. The model operator is constructed by an operator extensions theory method from the orthogonal sum of the Di...An explicitly solvable model for tunnelling of relativistic spinless particles through a sphere is suggested. The model operator is constructed by an operator extensions theory method from the orthogonal sum of the Dirac operators on a semi- axis and on the sphere. The transmission coefficient is obtained. The dependence of the transmission coefficient on the particle energy has a resonant character. One observes pairs of the Breit-Wigner and the Fano resonances. It correlates with the corresponding results for a non-relativistic particle.展开更多
In this paper we research the lower bound of the eigenvalue of Spinc Dirac operator on the Spinc manifold. By the Weisenbock formula, we get an estimate of it, then following the idea of Th Friedrich [2] and X Zhang [...In this paper we research the lower bound of the eigenvalue of Spinc Dirac operator on the Spinc manifold. By the Weisenbock formula, we get an estimate of it, then following the idea of Th Friedrich [2] and X Zhang [6]. We get a finer estimate of it. As an application, we give a condition when the Seiberg-Witten equation only has 0 solution.展开更多
APE smearing and overlap-Dirac operator are combined to filter vacuum configurations. The structures of vacuum are studied by low-lying eigenmodes of the overlap-Dirac operator, which exhibits that instanton liquid mo...APE smearing and overlap-Dirac operator are combined to filter vacuum configurations. The structures of vacuum are studied by low-lying eigenmodes of the overlap-Dirac operator, which exhibits that instanton liquid model can be used.展开更多
The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundar...The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.展开更多
In the present paper, the semi-commutative differential oparators associated with the 1-dimensional Dirac operator are constructed. Using this results, the hierarchy of the mKdV (-) polynomials are expressed in terms ...In the present paper, the semi-commutative differential oparators associated with the 1-dimensional Dirac operator are constructed. Using this results, the hierarchy of the mKdV (-) polynomials are expressed in terms of the KdV polynomials. These formulas give a new interpretation of the classical Darboux transformation and the Miura transformation. Moreover, the recursion operator associated with the hierarchy of the mKdV (-) polynomials is constructed by the algebraic method.展开更多
In this paper,we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the formL(f)=zfz-zfz,where f represents normalized harmonic mappings with bounded dilation.Then,...In this paper,we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the formL(f)=zfz-zfz,where f represents normalized harmonic mappings with bounded dilation.Then,using these results,we present better estimations for the Bloch constants of certain harmonic mappings L(f),where f is a K-quasiregular harmonic or open harmonic.Finally,we establish three versions of BlochLandau type theorem for biharmonic mappings of the form L(f).These results are sharp in some given cases and improve the related results of earlier authors.展开更多
New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model arei...New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model areidentified. The uniqueness and existence have been established. Themodel’sUlam-Hyers stability analysis has beenfound. In order to justify the theoretical results, numerical simulations are carried out for the presented methodin the range of fractional order to show the implications of fractional and fractal orders.We applied very effectivenumerical techniques to obtain the solutions of themodel and simulations. Also, we present conditions of existencefor a solution to the proposed epidemicmodel and to calculate the reproduction number in certain state conditionsof the analyzed dynamic system. COVID-19 fractional order model for the case of Wuhan, China, is offered foranalysis with simulations in order to determine the possible efficacy of Coronavirus disease transmission in theCommunity. For this reason, we employed the COVID-19 fractal fractional derivative model in the example ofWuhan, China, with the given beginning conditions. In conclusion, again the mathematical models with fractionaloperators can facilitate the improvement of decision-making for measures to be taken in the management of anepidemic situation.展开更多
本文考虑了一类内部具有两个不连续点且边界条件依赖谱参数的Dirac算子的谱性质。首先通过引入适当的Hilbert空间并在其上定义新的自伴算子,使得所考虑问题的特征值与该算子的特征值一致。然后通过构造基本解得到了特征值的一些性质。...本文考虑了一类内部具有两个不连续点且边界条件依赖谱参数的Dirac算子的谱性质。首先通过引入适当的Hilbert空间并在其上定义新的自伴算子,使得所考虑问题的特征值与该算子的特征值一致。然后通过构造基本解得到了特征值的一些性质。最后给出了问题的Green函数和预解算子。In this paper, we consider the spectral properties of a class of Dirac operators with two internal discontinuities and spectral parameter-dependent boundary conditions. First, the eigenvalues of the problem under consideration are made to coincide with the eigenvalues of the operator by introducing a suitable Hilbert space and defining a new self-adjoint operator on it. Then some properties of the eigenvalues are obtained by constructing the basic solution. Finally, Green’s function and the resolvent operator of the problem are given.展开更多
Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this p...Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this paper,we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels.In this approach,the overall population was separated into five cohorts.Furthermore,the descriptive behavior of the system was investigated,including prerequisites for the positivity of solutions,invariant domain of the solution,presence and stability of equilibrium points,and sensitivity analysis.We included a stochastic element in every cohort and employed linear growth and Lipschitz criteria to show the existence and uniqueness of solutions.Several numerical simulations for various fractional orders and randomization intensities are illustrated.展开更多
Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new f...Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new fractional operators,namely the CaputoFabrizio operator,the Atangana-Baleanu operator,the Sun-Hao-Zhang-Baleanu operator and the generalized Caputo type operator under the frame of the k-Prabhakar fractional integral operator.Usually,the theory of the k-Prabhakar fractional integral is regarded as a much broader than classical fractional operator.Here,we firstly give a series expansion of the k-Prabhakar fractional integral by means of the k-Riemann-Liouville integral.Then,a connection between the k-Prabhakar fractional integral and the four new fractional operators of the above mentioned was shown,respectively.In terms of the above analysis,we can obtain this a basic fact that it only needs to consider the k-Prabhakar fractional integral to cover these results from the four new fractional operators.展开更多
In 1951, Dirac proposed a formalism for a Lorentz invariant Aether with a vacuum state that contains all possible velocity states at each space-time point. Dirac showed no explicit path from the Aether towards the Qua...In 1951, Dirac proposed a formalism for a Lorentz invariant Aether with a vacuum state that contains all possible velocity states at each space-time point. Dirac showed no explicit path from the Aether towards the Quantum Mechanics. In this paper, we demonstrate that Dirac’s proposed Aether can be described by a lattice of possible events in space-time built in the local Lorentz frame. The idealised case of single velocity state leads to the famous Dirac equation for a plane wave state and is compatible with quantum statistics. On the lattice, possible space-time events are connected by the Dirac spinors which provide the probability of observing an event. The inertial mass of a particle is shown to be equivalent to the density of possible events on the lattice. Variation of the lattice density of events modifies the metric and provides a space-time curvature leading to the Hilbert action associated with general relativity. In classical limit, the perturbation in the density of possible events of the Aether is proportional to the Newtonian gravitational potential.展开更多
Magnetic topological semimetals have been at the forefront of condensed matter physics due to their ability to exhibit exotic transport phenomena.Investigating the interplay between magnetic and topological orders in ...Magnetic topological semimetals have been at the forefront of condensed matter physics due to their ability to exhibit exotic transport phenomena.Investigating the interplay between magnetic and topological orders in systems with broken time-reversal symmetry is crucial for realizing non-trivial quantum effects.We delve into the electronic structure of the rare-earth-based antiferromagnetic Dirac semimetal EuMg_(2)Bi_(2) using first-principles calculations and angle-resolved photoemission spectroscopy.Our calculations reveal that the spin-orbit coupling(SOC)in EuMg_(2)Bi_(2) prompts an insulator to topological semimetal transition,with the Dirac bands protected by crystal symmetries.The linearly dispersive states near the Fermi level,primarily originating from Bi 6p orbitals,are observed on both the(001)and(100)surfaces,confirming that EuMg_(2)Bi_(2) is a three-dimensional topological Dirac semimetal.This research offers pivotal insights into the interplay between magnetism,SOC and topological phase transitions in spintronics applications.展开更多
In this paper,we investigate sufficient and necessary conditions such that generalized Forelli-Rudin type operators T_(λ,τ,k),S_(λ,τ,k),Q_(λ,τ,k)and R_(λ,τ,k)are bounded between Lebesgue type spaces.In order t...In this paper,we investigate sufficient and necessary conditions such that generalized Forelli-Rudin type operators T_(λ,τ,k),S_(λ,τ,k),Q_(λ,τ,k)and R_(λ,τ,k)are bounded between Lebesgue type spaces.In order to prove the main results,we first give some bidirectional estimates for several typical integrals.展开更多
The presence of a pair of Weyl and Dirac points(WP-DP)in topological semimetal states is intriguing and sought after due to the effects associated with chiral topological charges.However,identifying these states in re...The presence of a pair of Weyl and Dirac points(WP-DP)in topological semimetal states is intriguing and sought after due to the effects associated with chiral topological charges.However,identifying these states in real materials poses a significant challenge.In this study,by means of first-principles calculations we predict the coexistence of charge-2 Dirac and charge-2 Weyl phonons at high-symmetry points within a noncentrosymmetric P4_(1)2_(1)2 space group.Furthermore,we propose GeO_(2)as an ideal candidate for realizing these states.Notably,we observe two distinct surface arcs that connect the Dirac and Weyl points across the entire Brillouin zone,which could facilitate their detection in future experimental investigations.This study not only presents a tangible material for experimentalists to explore the topological properties of WP-DP states but also opens up new avenues in the quest for ideal platforms to study chiral particles.展开更多
基金Project partially financially supported by the Funds from the Government of the Russian Federation(Grant No.074-U01)the Funds from the Ministry of Education and Science of the Russian Federation(GOSZADANIE 2014/190)(Grant Nos.14.Z50.31.0031 and 1.754.2014/K)the President Foundation of the Russian Federation(Grant No.MK-5001.2015.1)
文摘An explicitly solvable model for tunnelling of relativistic spinless particles through a sphere is suggested. The model operator is constructed by an operator extensions theory method from the orthogonal sum of the Dirac operators on a semi- axis and on the sphere. The transmission coefficient is obtained. The dependence of the transmission coefficient on the particle energy has a resonant character. One observes pairs of the Breit-Wigner and the Fano resonances. It correlates with the corresponding results for a non-relativistic particle.
基金Supported in part by Mathematics Tianyuan Fund(10226002)
文摘In this paper we research the lower bound of the eigenvalue of Spinc Dirac operator on the Spinc manifold. By the Weisenbock formula, we get an estimate of it, then following the idea of Th Friedrich [2] and X Zhang [6]. We get a finer estimate of it. As an application, we give a condition when the Seiberg-Witten equation only has 0 solution.
基金The project supported in part by the Key Research Plan of Theoretical Physics and Cross Science under Grant No. 90103018.
文摘APE smearing and overlap-Dirac operator are combined to filter vacuum configurations. The structures of vacuum are studied by low-lying eigenmodes of the overlap-Dirac operator, which exhibits that instanton liquid model can be used.
基金Project supported by the National Natural Science Foundation of China (No. 12002195)the National Science Fund for Distinguished Young Scholars (No. 12025204)the Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00018)。
文摘The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.
基金supported by JSPS KAKENHI Grant Number 2354-0255.
文摘In the present paper, the semi-commutative differential oparators associated with the 1-dimensional Dirac operator are constructed. Using this results, the hierarchy of the mKdV (-) polynomials are expressed in terms of the KdV polynomials. These formulas give a new interpretation of the classical Darboux transformation and the Miura transformation. Moreover, the recursion operator associated with the hierarchy of the mKdV (-) polynomials is constructed by the algebraic method.
基金supported by the Natural Science Foundation of Guangdong Province(2021A1515010058)。
文摘In this paper,we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the formL(f)=zfz-zfz,where f represents normalized harmonic mappings with bounded dilation.Then,using these results,we present better estimations for the Bloch constants of certain harmonic mappings L(f),where f is a K-quasiregular harmonic or open harmonic.Finally,we establish three versions of BlochLandau type theorem for biharmonic mappings of the form L(f).These results are sharp in some given cases and improve the related results of earlier authors.
基金Lucian Blaga University of Sibiu&Hasso Plattner Foundation Research Grants LBUS-IRG-2020-06.
文摘New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model areidentified. The uniqueness and existence have been established. Themodel’sUlam-Hyers stability analysis has beenfound. In order to justify the theoretical results, numerical simulations are carried out for the presented methodin the range of fractional order to show the implications of fractional and fractal orders.We applied very effectivenumerical techniques to obtain the solutions of themodel and simulations. Also, we present conditions of existencefor a solution to the proposed epidemicmodel and to calculate the reproduction number in certain state conditionsof the analyzed dynamic system. COVID-19 fractional order model for the case of Wuhan, China, is offered foranalysis with simulations in order to determine the possible efficacy of Coronavirus disease transmission in theCommunity. For this reason, we employed the COVID-19 fractal fractional derivative model in the example ofWuhan, China, with the given beginning conditions. In conclusion, again the mathematical models with fractionaloperators can facilitate the improvement of decision-making for measures to be taken in the management of anepidemic situation.
文摘本文考虑了一类内部具有两个不连续点且边界条件依赖谱参数的Dirac算子的谱性质。首先通过引入适当的Hilbert空间并在其上定义新的自伴算子,使得所考虑问题的特征值与该算子的特征值一致。然后通过构造基本解得到了特征值的一些性质。最后给出了问题的Green函数和预解算子。In this paper, we consider the spectral properties of a class of Dirac operators with two internal discontinuities and spectral parameter-dependent boundary conditions. First, the eigenvalues of the problem under consideration are made to coincide with the eigenvalues of the operator by introducing a suitable Hilbert space and defining a new self-adjoint operator on it. Then some properties of the eigenvalues are obtained by constructing the basic solution. Finally, Green’s function and the resolvent operator of the problem are given.
文摘Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this paper,we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels.In this approach,the overall population was separated into five cohorts.Furthermore,the descriptive behavior of the system was investigated,including prerequisites for the positivity of solutions,invariant domain of the solution,presence and stability of equilibrium points,and sensitivity analysis.We included a stochastic element in every cohort and employed linear growth and Lipschitz criteria to show the existence and uniqueness of solutions.Several numerical simulations for various fractional orders and randomization intensities are illustrated.
基金supported by the NSFC(11971475)the Natural Science Foundation of Jiangsu Province(BK20230708)+2 种基金the Natural Science Foundation for the Universities in Jiangsu Province(23KJB110003)Geng's research was supported by the NSFC(11201041)the China Postdoctoral Science Foundation(2019M651765)。
文摘Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new fractional operators,namely the CaputoFabrizio operator,the Atangana-Baleanu operator,the Sun-Hao-Zhang-Baleanu operator and the generalized Caputo type operator under the frame of the k-Prabhakar fractional integral operator.Usually,the theory of the k-Prabhakar fractional integral is regarded as a much broader than classical fractional operator.Here,we firstly give a series expansion of the k-Prabhakar fractional integral by means of the k-Riemann-Liouville integral.Then,a connection between the k-Prabhakar fractional integral and the four new fractional operators of the above mentioned was shown,respectively.In terms of the above analysis,we can obtain this a basic fact that it only needs to consider the k-Prabhakar fractional integral to cover these results from the four new fractional operators.
文摘In 1951, Dirac proposed a formalism for a Lorentz invariant Aether with a vacuum state that contains all possible velocity states at each space-time point. Dirac showed no explicit path from the Aether towards the Quantum Mechanics. In this paper, we demonstrate that Dirac’s proposed Aether can be described by a lattice of possible events in space-time built in the local Lorentz frame. The idealised case of single velocity state leads to the famous Dirac equation for a plane wave state and is compatible with quantum statistics. On the lattice, possible space-time events are connected by the Dirac spinors which provide the probability of observing an event. The inertial mass of a particle is shown to be equivalent to the density of possible events on the lattice. Variation of the lattice density of events modifies the metric and provides a space-time curvature leading to the Hilbert action associated with general relativity. In classical limit, the perturbation in the density of possible events of the Aether is proportional to the Newtonian gravitational potential.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1604302)the National Natural Science Foundation of China(Grant Nos.U1632266,11927807,and U2032207)the approval of the Proposal Assessing Committee of SiP.ME^(2) platform project(Proposal No.11227902)supported by the National Science Foundation of China。
文摘Magnetic topological semimetals have been at the forefront of condensed matter physics due to their ability to exhibit exotic transport phenomena.Investigating the interplay between magnetic and topological orders in systems with broken time-reversal symmetry is crucial for realizing non-trivial quantum effects.We delve into the electronic structure of the rare-earth-based antiferromagnetic Dirac semimetal EuMg_(2)Bi_(2) using first-principles calculations and angle-resolved photoemission spectroscopy.Our calculations reveal that the spin-orbit coupling(SOC)in EuMg_(2)Bi_(2) prompts an insulator to topological semimetal transition,with the Dirac bands protected by crystal symmetries.The linearly dispersive states near the Fermi level,primarily originating from Bi 6p orbitals,are observed on both the(001)and(100)surfaces,confirming that EuMg_(2)Bi_(2) is a three-dimensional topological Dirac semimetal.This research offers pivotal insights into the interplay between magnetism,SOC and topological phase transitions in spintronics applications.
基金supported by the Natural Science Foundation of Hunan Province of China(2022JJ30369)the Education Department Important Foundation of Hunan Province in China(23A0095)。
文摘In this paper,we investigate sufficient and necessary conditions such that generalized Forelli-Rudin type operators T_(λ,τ,k),S_(λ,τ,k),Q_(λ,τ,k)and R_(λ,τ,k)are bounded between Lebesgue type spaces.In order to prove the main results,we first give some bidirectional estimates for several typical integrals.
基金supported by the National Key R&D Program of China(Grant No.2021YFB3501503)the National Natural Science Foundation of China(Grant No.51474202)+2 种基金Network and Information Foundation of CAS(Grant No.CAS-WX2021SF-0102)the Key Project of Chinese Academy of Sciences(Grant No.ZDRW-CN-2021-2-5)J.X.Li also acknowledges the funding from China Postdoctoral Science Foundation(Grant Nos.2022T150660 and 2021M700152).
文摘The presence of a pair of Weyl and Dirac points(WP-DP)in topological semimetal states is intriguing and sought after due to the effects associated with chiral topological charges.However,identifying these states in real materials poses a significant challenge.In this study,by means of first-principles calculations we predict the coexistence of charge-2 Dirac and charge-2 Weyl phonons at high-symmetry points within a noncentrosymmetric P4_(1)2_(1)2 space group.Furthermore,we propose GeO_(2)as an ideal candidate for realizing these states.Notably,we observe two distinct surface arcs that connect the Dirac and Weyl points across the entire Brillouin zone,which could facilitate their detection in future experimental investigations.This study not only presents a tangible material for experimentalists to explore the topological properties of WP-DP states but also opens up new avenues in the quest for ideal platforms to study chiral particles.