When a target manifold is complete with a bounded curvature, we prove that there exists a unique global solution which satisfies the Euler-lagrange equation of for the given Cauchy data.
In our previous works, we suggest that quantum particles are composite physical objects endowed with the geometric and topological structures of their corresponding differentiable manifolds that would allow them to im...In our previous works, we suggest that quantum particles are composite physical objects endowed with the geometric and topological structures of their corresponding differentiable manifolds that would allow them to imitate and adapt to physical environments. In this work, we show that Dirac equation in fact describes quantum particles as composite structures that are in a fluid state in which the components of the wavefunction can be identified with the stream function and the velocity potential of a potential flow formulated in the theory of classical fluids. We also show that Dirac quantum particles can manifest as standing waves which are the result of the superposition of two fluid flows moving in opposite directions. However, for a steady motion a Dirac quantum particle does not exhibit a wave motion even though it has the potential to establish a wave within its physical structure, therefore, without an external disturbance a Dirac quantum particle may be considered as a classical particle defined in classical physics. And furthermore, from the fact that there are two identical fluid flows in opposite directions within their physical structures, the fluid state model of Dirac quantum particles can be used to explain why fermions are spin-half particles.展开更多
Einstein derived the energy-momentum relationship which holds in an isolated system in free space. However, this relationship is not applicable in the space inside a hydrogen atom where there is potential energy. Ther...Einstein derived the energy-momentum relationship which holds in an isolated system in free space. However, this relationship is not applicable in the space inside a hydrogen atom where there is potential energy. Therefore, in 2011, the author derived an energy-momentum relationship applicable to the electron constituting a hydrogen atom. This paper derives that relationship in a simpler way using another method. From this relationship, it is possible to derive the formula for the energy levels of a hydrogen atom. The energy values obtained from this formula almost match the theoretical values of Bohr. However, the relationship derived by the author includes a state that cannot be predicted with Bohr’s theory. In the hydrogen atom, there is an energy level with n = 0. Also, there are energy levels where the relativistic energy of the electron becomes negative. An electron with this negative energy (mass) exists near the atomic nucleus (proton). The name “dark hydrogen atom” is given to matter formed from one electron with this negative mass and one proton with positive mass. Dark hydrogen atoms, dark hydrogen molecules, other types of dark atoms, and aggregates made up of dark molecules are plausible candidates for dark matter, the mysterious type of matter whose true nature is currently unknown.展开更多
文摘When a target manifold is complete with a bounded curvature, we prove that there exists a unique global solution which satisfies the Euler-lagrange equation of for the given Cauchy data.
文摘In our previous works, we suggest that quantum particles are composite physical objects endowed with the geometric and topological structures of their corresponding differentiable manifolds that would allow them to imitate and adapt to physical environments. In this work, we show that Dirac equation in fact describes quantum particles as composite structures that are in a fluid state in which the components of the wavefunction can be identified with the stream function and the velocity potential of a potential flow formulated in the theory of classical fluids. We also show that Dirac quantum particles can manifest as standing waves which are the result of the superposition of two fluid flows moving in opposite directions. However, for a steady motion a Dirac quantum particle does not exhibit a wave motion even though it has the potential to establish a wave within its physical structure, therefore, without an external disturbance a Dirac quantum particle may be considered as a classical particle defined in classical physics. And furthermore, from the fact that there are two identical fluid flows in opposite directions within their physical structures, the fluid state model of Dirac quantum particles can be used to explain why fermions are spin-half particles.
文摘Einstein derived the energy-momentum relationship which holds in an isolated system in free space. However, this relationship is not applicable in the space inside a hydrogen atom where there is potential energy. Therefore, in 2011, the author derived an energy-momentum relationship applicable to the electron constituting a hydrogen atom. This paper derives that relationship in a simpler way using another method. From this relationship, it is possible to derive the formula for the energy levels of a hydrogen atom. The energy values obtained from this formula almost match the theoretical values of Bohr. However, the relationship derived by the author includes a state that cannot be predicted with Bohr’s theory. In the hydrogen atom, there is an energy level with n = 0. Also, there are energy levels where the relativistic energy of the electron becomes negative. An electron with this negative energy (mass) exists near the atomic nucleus (proton). The name “dark hydrogen atom” is given to matter formed from one electron with this negative mass and one proton with positive mass. Dark hydrogen atoms, dark hydrogen molecules, other types of dark atoms, and aggregates made up of dark molecules are plausible candidates for dark matter, the mysterious type of matter whose true nature is currently unknown.