Characteristics of a direct current (DC) discharge in atmospheric pressure helium are numerically investigated based on a one-dimensional fluid model. The results indicate that the discharge does not reach its stead...Characteristics of a direct current (DC) discharge in atmospheric pressure helium are numerically investigated based on a one-dimensional fluid model. The results indicate that the discharge does not reach its steady state till it takes a period of time. Moreover, the required time increases and the current density of the steady state decreases with increasing the gap width. Through analyzing the spatial distributions of the electron density, the ion density and the electric field at different discharge moments, it is found that the DC discharge starts with a Townsend regime, then transits to a glow regime. In addition, the discharge operates in a normal glow mode or an abnormal glow one under different parameters, such as the gap width, the ballast resistors, and the secondary electron emission coefficients, judged by its voltage-current characteristics.展开更多
In this study, growth of mirror-like ultra-nanocrystalline diamond(UNCD) films by a facile hybrid CVD approach was presented. The nucleation and deposition of UNCD films were conducted in microwave plasma CVD(MPCVD...In this study, growth of mirror-like ultra-nanocrystalline diamond(UNCD) films by a facile hybrid CVD approach was presented. The nucleation and deposition of UNCD films were conducted in microwave plasma CVD(MPCVD) and direct current glow discharge CVD(DC GD CVD) on silicon substrates, respectively. A very high nucleation density(about 1×10^11 nuclei cm^-2) was obtained after plasma pretreatment. Furthermore, large area mirrorlike UNCD films of Φ 50 mm were synthesized by DC GD CVD. The thickness and grain size of the UNCD films are 24 μm and 7.1 nm, respectively. In addition, the deposition mechanism of the UNCD films was discussed.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11575050 and 10805013)the Midwest Universities Comprehensive Strength Promotion Project+1 种基金the Natural Science Foundation of Hebei Province,China(Grant Nos.A2016201042 and A2015201092)the Research Foundation of Education Bureau of Hebei Province,China(Grant No.LJRC011)
文摘Characteristics of a direct current (DC) discharge in atmospheric pressure helium are numerically investigated based on a one-dimensional fluid model. The results indicate that the discharge does not reach its steady state till it takes a period of time. Moreover, the required time increases and the current density of the steady state decreases with increasing the gap width. Through analyzing the spatial distributions of the electron density, the ion density and the electric field at different discharge moments, it is found that the DC discharge starts with a Townsend regime, then transits to a glow regime. In addition, the discharge operates in a normal glow mode or an abnormal glow one under different parameters, such as the gap width, the ballast resistors, and the secondary electron emission coefficients, judged by its voltage-current characteristics.
基金supported by the program of international S&T cooperation(Agreement No.S2015ZR1100)
文摘In this study, growth of mirror-like ultra-nanocrystalline diamond(UNCD) films by a facile hybrid CVD approach was presented. The nucleation and deposition of UNCD films were conducted in microwave plasma CVD(MPCVD) and direct current glow discharge CVD(DC GD CVD) on silicon substrates, respectively. A very high nucleation density(about 1×10^11 nuclei cm^-2) was obtained after plasma pretreatment. Furthermore, large area mirrorlike UNCD films of Φ 50 mm were synthesized by DC GD CVD. The thickness and grain size of the UNCD films are 24 μm and 7.1 nm, respectively. In addition, the deposition mechanism of the UNCD films was discussed.