For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is develo...For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process.展开更多
A coupled numerical method for the direct numerical simulation of particle-fluid systems is formulated and implemented, resolving an order of magnitude smaller than particle size. The particle motion is described by t...A coupled numerical method for the direct numerical simulation of particle-fluid systems is formulated and implemented, resolving an order of magnitude smaller than particle size. The particle motion is described by the time-driven hard-sphere model, while the hydrodynamic equations governing fluid flow are solved by the lattice Boltzmann method (LBM), Particle-fluid coupling is realized by an immersed boundary method (IBM), which considers the effect of boundary on surrounding fluid as a restoring force added to the governing equations of the fluid. The proposed scheme is validated in the classical flow-around-cylinder simulations, and preliminary application of this scheme to fluidization is reported, demonstrating it to be a promising computational strategy for better understanding complex behavior in particle-fluid systems.展开更多
A single-relaxation-time fluctuating lattice-Boltzmann (LB) model for direct numerical simulation (DNS) of particle Brownian motion is established by adding a fluctuating component to the lattice-Boltzmann equatio...A single-relaxation-time fluctuating lattice-Boltzmann (LB) model for direct numerical simulation (DNS) of particle Brownian motion is established by adding a fluctuating component to the lattice-Boltzmann equations (LBEs). The fluctuating term is proved to be the random stress tensor in fluctuating hydrodynamics by recovering Navier-Stokes equations from LBEs through a Chapman-Enskog expansion. A three-dimensional implementation of the model is also presented, along with simulations of a single spherical particle and 125 spherical particles at short times. Numerical results including the meansquare displacement, velocity autocorrelation function and self-diffusion coefficient of particles compare favorably with theoretical results and previous numerical results.展开更多
The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the...The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the gas film and grooves, turbulence can change the pressure distribution of the gas film. Hence, the seal performance is influenced. However, turbulence effects and methods for their evaluation are not considered in the existing industrial designs of dry-gas seal. The present paper numerically obtains the turbulent flow fields of a spiral-groove dry-gas seal to analyze turbulence effects on seal performance. The direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) methods are utilized to predict the velocity field properties in the grooves and gas film. The key performance parameter, open force, is obtained by integrating the pressure distribution, and the obtained result is in good agreement with the experimental data of other researchers. Very large velocity gradients are found in the sealing gas film because of the geometrical effects of the grooves. Considering turbulence effects, the calculation results show that both the gas film pressure and open force decrease. The RANS method underestimates the performance, compared with the DNS. The solution of the conventional Reynolds lubrication equation without turbulence effects suffers from significant calculation errors and a small application scope. The present study helps elucidate the physical mechanism of the hydrodynamic effects of grooves for improving and optimizing the industrial design or seal face pattern of a dry-gas seal.展开更多
Choanoid fluidized bed bioreactors (CFBBs) are newly developed core devices used in bioartificial liver- support systems to detoxify blood plasma of patients with microencapsulated liver cells. Direct numerical simu...Choanoid fluidized bed bioreactors (CFBBs) are newly developed core devices used in bioartificial liver- support systems to detoxify blood plasma of patients with microencapsulated liver cells. Direct numerical simulations (DNS) with a direct-forcing/fictitious domain (DF/FD) method were conducted to study the hydrodynamic performance of a CFBB. The effects of particle-fluid density ratio, particle number, and fil- ter screens preventing particles flowing out of the reactor were investigated. Depending on density ratio, two flow patterns are evident: the circulation mode in which the suspension rises along one sidewall and descends along the other sidewall, and the non-circulation mode in which the whole suspension roughly flows upward. The circulation mode takes place under non-neutral-buoyancy where the particle sedimentation dominates, whereas the non-circulation mode occurs under pure or near-neutral buoy- ancy with particle-fluid density ratios of unity or near unity. With particle-fluid density ratio of 1.01, the bioartificial liver reactor performs optimally as the significant particle accumulation existing in the non-circulation mode and the large shear forces on particles in the circulation mode are avoided. At higher particle volume fractions, more particles accumulate at the filter screens and a secondary counter circulation to the primary flow is observed at the top of the bed. Modelled as porous media, the filter screens play a negative role on particle fluidization velocities; without screens, particles are fluidized faster because of the higher fluid velocities in the jet center region. This work extends the DF/FD-based DNS to a fluidized bed and accounts for effects from inclined side walls and porous media, providing some hydrodynamics insight that is important for CFBB design and operation optimization.展开更多
In this paper, we combine the direct-forcing fictitious domain (DF/FD) method and the sharp interface method to resolve the problem of particle dielectrophoresis in two dimensions. The flow field and the motion of p...In this paper, we combine the direct-forcing fictitious domain (DF/FD) method and the sharp interface method to resolve the problem of particle dielectrophoresis in two dimensions. The flow field and the motion of particles are solved with the DF/FD method, the electric field is solved with the sharp inter- face method, and the electrostatic force on the particles is computed using the Maxwell stress tensor method. The proposed method is validated via three problems: effective conductivity of particle compos- ite between two planar plates, cell trapping in a channel, and motion of particles due to both conventional and traveling wave dielectrophoretic forces.展开更多
基金financially supported by the Program for New Century Excellent Talents in University(No.NCET-13-0229,NCET-09-0396)the National Science & Technology Key Projects of Numerical Control(No.2012ZX04010-031,2012ZX0412-011)the National High Technology Research and Development Program("863"Program)of China(No.2013031003)
文摘For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process.
基金sponsored by Ministry of Finance under the grant ZDYZ2008-2National Key Science and Technology Project under the grant 2008ZX05014-003-006HZthe Chinese Academy of Sciences under the grant KGCX2-YW-124
文摘A coupled numerical method for the direct numerical simulation of particle-fluid systems is formulated and implemented, resolving an order of magnitude smaller than particle size. The particle motion is described by the time-driven hard-sphere model, while the hydrodynamic equations governing fluid flow are solved by the lattice Boltzmann method (LBM), Particle-fluid coupling is realized by an immersed boundary method (IBM), which considers the effect of boundary on surrounding fluid as a restoring force added to the governing equations of the fluid. The proposed scheme is validated in the classical flow-around-cylinder simulations, and preliminary application of this scheme to fluidization is reported, demonstrating it to be a promising computational strategy for better understanding complex behavior in particle-fluid systems.
基金supported by the Major Program of the National Natural Science Foundation of China with Grant No.10632070
文摘A single-relaxation-time fluctuating lattice-Boltzmann (LB) model for direct numerical simulation (DNS) of particle Brownian motion is established by adding a fluctuating component to the lattice-Boltzmann equations (LBEs). The fluctuating term is proved to be the random stress tensor in fluctuating hydrodynamics by recovering Navier-Stokes equations from LBEs through a Chapman-Enskog expansion. A three-dimensional implementation of the model is also presented, along with simulations of a single spherical particle and 125 spherical particles at short times. Numerical results including the meansquare displacement, velocity autocorrelation function and self-diffusion coefficient of particles compare favorably with theoretical results and previous numerical results.
基金supported by Scientific Research Foundation for Returned Scholars,Ministry of Education of China
文摘The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the gas film and grooves, turbulence can change the pressure distribution of the gas film. Hence, the seal performance is influenced. However, turbulence effects and methods for their evaluation are not considered in the existing industrial designs of dry-gas seal. The present paper numerically obtains the turbulent flow fields of a spiral-groove dry-gas seal to analyze turbulence effects on seal performance. The direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) methods are utilized to predict the velocity field properties in the grooves and gas film. The key performance parameter, open force, is obtained by integrating the pressure distribution, and the obtained result is in good agreement with the experimental data of other researchers. Very large velocity gradients are found in the sealing gas film because of the geometrical effects of the grooves. Considering turbulence effects, the calculation results show that both the gas film pressure and open force decrease. The RANS method underestimates the performance, compared with the DNS. The solution of the conventional Reynolds lubrication equation without turbulence effects suffers from significant calculation errors and a small application scope. The present study helps elucidate the physical mechanism of the hydrodynamic effects of grooves for improving and optimizing the industrial design or seal face pattern of a dry-gas seal.
基金The authors gratefully acknowledge the supports from China Postdoctoral Science Foundation (Grant No. 2014M550327), the opening foundation of the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and the National Natural Science Foundation of China (Grant No. 11372275). The authors are also grateful to Chengbo Yu and Liang Yu for their introduction of the choanoid fluidized bed bioreactor and helpful discussions.
文摘Choanoid fluidized bed bioreactors (CFBBs) are newly developed core devices used in bioartificial liver- support systems to detoxify blood plasma of patients with microencapsulated liver cells. Direct numerical simulations (DNS) with a direct-forcing/fictitious domain (DF/FD) method were conducted to study the hydrodynamic performance of a CFBB. The effects of particle-fluid density ratio, particle number, and fil- ter screens preventing particles flowing out of the reactor were investigated. Depending on density ratio, two flow patterns are evident: the circulation mode in which the suspension rises along one sidewall and descends along the other sidewall, and the non-circulation mode in which the whole suspension roughly flows upward. The circulation mode takes place under non-neutral-buoyancy where the particle sedimentation dominates, whereas the non-circulation mode occurs under pure or near-neutral buoy- ancy with particle-fluid density ratios of unity or near unity. With particle-fluid density ratio of 1.01, the bioartificial liver reactor performs optimally as the significant particle accumulation existing in the non-circulation mode and the large shear forces on particles in the circulation mode are avoided. At higher particle volume fractions, more particles accumulate at the filter screens and a secondary counter circulation to the primary flow is observed at the top of the bed. Modelled as porous media, the filter screens play a negative role on particle fluidization velocities; without screens, particles are fluidized faster because of the higher fluid velocities in the jet center region. This work extends the DF/FD-based DNS to a fluidized bed and accounts for effects from inclined side walls and porous media, providing some hydrodynamics insight that is important for CFBB design and operation optimization.
基金support from the National Natural Science Foundation of China(no.10872181)the National Basic Research Program of China(no.2006CB705400)+1 种基金Chinese Universities Scientific Fundthe Major Program of the National Natural Science Foundation of China(no.10632070)
文摘In this paper, we combine the direct-forcing fictitious domain (DF/FD) method and the sharp interface method to resolve the problem of particle dielectrophoresis in two dimensions. The flow field and the motion of particles are solved with the DF/FD method, the electric field is solved with the sharp inter- face method, and the electrostatic force on the particles is computed using the Maxwell stress tensor method. The proposed method is validated via three problems: effective conductivity of particle compos- ite between two planar plates, cell trapping in a channel, and motion of particles due to both conventional and traveling wave dielectrophoretic forces.