Diode clamped multi-level inverter (DCMLI) has a wide application prospect in high-voltage and adjustable speed drive systems due to its low stress on switching devices, low harmonic output, and simple structure. Ho...Diode clamped multi-level inverter (DCMLI) has a wide application prospect in high-voltage and adjustable speed drive systems due to its low stress on switching devices, low harmonic output, and simple structure. However, the problem of complexity of selecting vectors and capacitor voltage unbalance needs to be solved when the algorithm of direct torque control (DTC) is implemented on DCMLI. In this paper, a fuzzy DTC system of an induction machine fed by a three-level neutral-point-clamped (NPC) inverter is proposed. After introducing fuzzy logic, optimal selecting switching state is realized by applying various strategies which can distinguish the grade of the errors of stator flux linkage, torque, the neutral-point potential, and the position of stator flux linkage. Consequently, the neutral-point potential unbalance, the dr/dr of output voltage and the switching loss are restrained effectively, and desirable dynamic and steady-state performances of induction machines can be obtained for the DTC scheme. A design method of the fuzzy controller is introduced in detail, and the relevant simulation and experimental results have verified the feasibility of the proposed control algorithm.展开更多
To reduce the torque ripple in motors resulting from the use of conventional direct torque control(DTC),a model predictive control(MPC)-based DTC strategy for a direct matrix converter-fed induction motor is proposed ...To reduce the torque ripple in motors resulting from the use of conventional direct torque control(DTC),a model predictive control(MPC)-based DTC strategy for a direct matrix converter-fed induction motor is proposed in this paper.Two new look-up tables are proposed,these are derived on the basis of the control of the electromagnetic torque and stator flux using all the feasible voltage vectors and their associated switching states.Finite control set model predictive control(FCS-MPC)has then been adopted to select the optimal switching state that minimizes the cost function related to the electromagnetic torque.Finally,the experimental results are shown to verify the reduced torque ripple performance of the proposed MPC-based DTC method.展开更多
Aiming at the torque and flux ripples in the direct torque control and the time-varying parameters for permanent magnet synchronous motor (PMSM), a model predictive direct torque control with online parameter estimati...Aiming at the torque and flux ripples in the direct torque control and the time-varying parameters for permanent magnet synchronous motor (PMSM), a model predictive direct torque control with online parameter estimation based on the extended Kalman filter for PMSM is designed. By predicting the errors of torque and flux based on the model and the current states of the system, the optimal voltage vector is selected to minimize the error of torque and flux. The stator resistance and inductance are estimated online via EKF to reduce the effect of model error and the current estimation can reduce the error caused by measurement noise. The stability of the EKF is proved in theory. The simulation experiment results show the method can estimate the motor parameters, reduce the torque, and flux ripples and improve the performance of direct torque control for permanent magnet synchronous motor (PMSM).展开更多
Induction motor is the most sought after motor in the industry for excellent performance characteristics and robustness. Developments in the Power Electronic circuitry have revolutionised the induction motor industry ...Induction motor is the most sought after motor in the industry for excellent performance characteristics and robustness. Developments in the Power Electronic circuitry have revolutionised the induction motor industry leading to the developments in various control strategies and circuits for motor control. Direct Torque Control (DTC) is one of the excellent control strategies preferred by industries for controlling the torque and flux in an induction machine. The main drawback of DTC is the presence of torque ripple which is slightly more than the acceptable limit. There are various parameters that introduce ripples in the electromagnetic torque, one of them being the type of inverter circuit. There are various types of inverter circuits available and the effect of each of them in the production of torque ripple is different. This work is an attempt to identify the influence of various multilevel inverter circuits on the torque ripple level and to propose the best inverter circuit. The influence of multilevel diode clamped inverter and cascaded H bridge inverter circuits on torque ripple minimization, is analysed using simulation studies for identifying the most suitable multilevel inverter circuit which gives minimum torque ripple. The results obtained from the simulation studies are validated by hardware implementation on 0.75 kW induction motor.展开更多
The mathematic model of direct torque control (DTC) was deduced. Two simulating models based on the MATLAB & SIMULINK were established. The emphasis is focused on study of the performance difference of the DTC sys...The mathematic model of direct torque control (DTC) was deduced. Two simulating models based on the MATLAB & SIMULINK were established. The emphasis is focused on study of the performance difference of the DTC system with stator flux hexagon and circle trajectories. The simulation waveforms of flux, torque and current characters with two flux trajectories were given. Experiments were carried out in an AC drive system based on induction motor and two-level inverter. A dual-CPU structure was used and the communication with two CPUs was obtained by a dual-port RAM in this system.展开更多
In this paper, an improved PI (proportional integral) stator resistance estimation for a DTC (direct torque controlled) induction motor is proposed. This estimation method is based on an on-line stator resistance ...In this paper, an improved PI (proportional integral) stator resistance estimation for a DTC (direct torque controlled) induction motor is proposed. This estimation method is based on an on-line stator resistance correction regarding the variations of the stator current estimation error. In fact, the input variable of the P1 estimator is the stator current estimation error. The main idea is to tune accurately the stator resistance value relatively to the evolution of the stator current estimation error gradient to avoid the drive instability and ensure the tracking of the actual value of the stator resistance. But there is an unavoidable steady state error between the filtered stator current modulus and its estimated value from the dq model of the machine which is due to pseudo random commutations of the inverter switches. This may deteriorate the performance of the proposed fuzzy stator resistance estimator. An offset has been introduced in order to overcome this problem, for different speed command values and load torques. Simulation results show that the proposed estimator was able to successfully track the actual value of the stator resistance lbr different operating conditions.展开更多
To improve the robustness and performance of the dynamic response of a cage asynchronous motor,a direct torque control(DTC)based on sliding mode control(SMC)is adopted to replace traditional proportional-integral(PI)a...To improve the robustness and performance of the dynamic response of a cage asynchronous motor,a direct torque control(DTC)based on sliding mode control(SMC)is adopted to replace traditional proportional-integral(PI)and hysteresis comparators.The combination of the proposed strategy with sinusoidal pulse width modulation(SPWM)applied to a three-level neutral point clamped(NPC)inverter brings many advantages such as a reduction in harmonics,and precise and rapid tracking of the references.Simulations are performed for a three-level inverter with SM-DTC,a two-level inverter with SM-DTC and the three-level inverter with PI-DTC-SPWM.The results show that the SM-DTC method achieves better performance in terms of reference tracking,while adoption of the threelevel inverter topology can effectively reduce the ripples.Applying the SM-DTC to the three-level inverter presents the best solution for achieving efficient and robust control.In addition,the use of a sliding mode speed estimator eliminates the mechanical sensor and this increases the reliability of the system.展开更多
This article presents the direct torque control (DTC) strategy for the doubly fed induction motor (DFIM) connected to two three-level voltage source inverters (3LVSIs) with neutral point clamped (NPC) structure. This ...This article presents the direct torque control (DTC) strategy for the doubly fed induction motor (DFIM) connected to two three-level voltage source inverters (3LVSIs) with neutral point clamped (NPC) structure. This control method allows to reduce the torque and flux ripples as well as to optimize the total harmonic distortion (THD) of motor currents. The use of 3LVSI increases the number of generated voltage, which allows improving the quality of its waveform and thus improves the DTC strategy. The system modeling and control are implemented in Matlab/Simulink environment. The analysis of simulation results shows the better performances of this control, especially in terms of torque and flux behavior, compared to conventional DTC.展开更多
Since only one inverter voltage vector is applied during each duty cycle, traditional model predictive direct power control(MPDPC) for grid-connected inverters(GCIs) results in serious harmonics in current and power. ...Since only one inverter voltage vector is applied during each duty cycle, traditional model predictive direct power control(MPDPC) for grid-connected inverters(GCIs) results in serious harmonics in current and power. Moreover, a high sampling frequency is needed to ensure satisfactory steady-state performance, which is contradictory to its long execution time due to the iterative prediction calculations. To solve these problems, a novel dead-beat MPDPC strategy is proposed, using two active inverter voltage vectors and one zero inverter voltage vector during each duty cycle. Adoption of three inverter vectors ensures a constant switching frequency. Thus, smooth steady-state performance of both current and power can be obtained. Unlike the traditional three-vector based MPDPC strategy, the proposed three vectors are selected based on the power errors rather than the sector where the grid voltage vector is located, which ensures that the duration times of the selected vectors are positive all the time. Iterative calculations of the cost function in traditional predictive control are also removed, which makes the proposed strategy easy to implement on digital signal processors(DSPs) for industrial applications. Results of experiments based on a 1 kW inverter setup validate the feasibility of the proposed three-vector based dead-beat MPDPC strategy.展开更多
文摘Diode clamped multi-level inverter (DCMLI) has a wide application prospect in high-voltage and adjustable speed drive systems due to its low stress on switching devices, low harmonic output, and simple structure. However, the problem of complexity of selecting vectors and capacitor voltage unbalance needs to be solved when the algorithm of direct torque control (DTC) is implemented on DCMLI. In this paper, a fuzzy DTC system of an induction machine fed by a three-level neutral-point-clamped (NPC) inverter is proposed. After introducing fuzzy logic, optimal selecting switching state is realized by applying various strategies which can distinguish the grade of the errors of stator flux linkage, torque, the neutral-point potential, and the position of stator flux linkage. Consequently, the neutral-point potential unbalance, the dr/dr of output voltage and the switching loss are restrained effectively, and desirable dynamic and steady-state performances of induction machines can be obtained for the DTC scheme. A design method of the fuzzy controller is introduced in detail, and the relevant simulation and experimental results have verified the feasibility of the proposed control algorithm.
基金This work was supported in part by the Hunan Provincial Key Laboratory of Power Electronics Equipment and Grid under Grant 2018TP1001in part by the National Natural Science Foundation of China under Grant 61903382,51807206,61933011+1 种基金in part by the Major Project of Changzhutan Self-Dependent Innovation Demonstration Area under Grant 2018XK2002in part by the Natural Science Foundation of Hunan Province,China under Grant 2020JJ5722 and 2020JJ5753.
文摘To reduce the torque ripple in motors resulting from the use of conventional direct torque control(DTC),a model predictive control(MPC)-based DTC strategy for a direct matrix converter-fed induction motor is proposed in this paper.Two new look-up tables are proposed,these are derived on the basis of the control of the electromagnetic torque and stator flux using all the feasible voltage vectors and their associated switching states.Finite control set model predictive control(FCS-MPC)has then been adopted to select the optimal switching state that minimizes the cost function related to the electromagnetic torque.Finally,the experimental results are shown to verify the reduced torque ripple performance of the proposed MPC-based DTC method.
文摘Aiming at the torque and flux ripples in the direct torque control and the time-varying parameters for permanent magnet synchronous motor (PMSM), a model predictive direct torque control with online parameter estimation based on the extended Kalman filter for PMSM is designed. By predicting the errors of torque and flux based on the model and the current states of the system, the optimal voltage vector is selected to minimize the error of torque and flux. The stator resistance and inductance are estimated online via EKF to reduce the effect of model error and the current estimation can reduce the error caused by measurement noise. The stability of the EKF is proved in theory. The simulation experiment results show the method can estimate the motor parameters, reduce the torque, and flux ripples and improve the performance of direct torque control for permanent magnet synchronous motor (PMSM).
文摘Induction motor is the most sought after motor in the industry for excellent performance characteristics and robustness. Developments in the Power Electronic circuitry have revolutionised the induction motor industry leading to the developments in various control strategies and circuits for motor control. Direct Torque Control (DTC) is one of the excellent control strategies preferred by industries for controlling the torque and flux in an induction machine. The main drawback of DTC is the presence of torque ripple which is slightly more than the acceptable limit. There are various parameters that introduce ripples in the electromagnetic torque, one of them being the type of inverter circuit. There are various types of inverter circuits available and the effect of each of them in the production of torque ripple is different. This work is an attempt to identify the influence of various multilevel inverter circuits on the torque ripple level and to propose the best inverter circuit. The influence of multilevel diode clamped inverter and cascaded H bridge inverter circuits on torque ripple minimization, is analysed using simulation studies for identifying the most suitable multilevel inverter circuit which gives minimum torque ripple. The results obtained from the simulation studies are validated by hardware implementation on 0.75 kW induction motor.
文摘The mathematic model of direct torque control (DTC) was deduced. Two simulating models based on the MATLAB & SIMULINK were established. The emphasis is focused on study of the performance difference of the DTC system with stator flux hexagon and circle trajectories. The simulation waveforms of flux, torque and current characters with two flux trajectories were given. Experiments were carried out in an AC drive system based on induction motor and two-level inverter. A dual-CPU structure was used and the communication with two CPUs was obtained by a dual-port RAM in this system.
文摘In this paper, an improved PI (proportional integral) stator resistance estimation for a DTC (direct torque controlled) induction motor is proposed. This estimation method is based on an on-line stator resistance correction regarding the variations of the stator current estimation error. In fact, the input variable of the P1 estimator is the stator current estimation error. The main idea is to tune accurately the stator resistance value relatively to the evolution of the stator current estimation error gradient to avoid the drive instability and ensure the tracking of the actual value of the stator resistance. But there is an unavoidable steady state error between the filtered stator current modulus and its estimated value from the dq model of the machine which is due to pseudo random commutations of the inverter switches. This may deteriorate the performance of the proposed fuzzy stator resistance estimator. An offset has been introduced in order to overcome this problem, for different speed command values and load torques. Simulation results show that the proposed estimator was able to successfully track the actual value of the stator resistance lbr different operating conditions.
文摘To improve the robustness and performance of the dynamic response of a cage asynchronous motor,a direct torque control(DTC)based on sliding mode control(SMC)is adopted to replace traditional proportional-integral(PI)and hysteresis comparators.The combination of the proposed strategy with sinusoidal pulse width modulation(SPWM)applied to a three-level neutral point clamped(NPC)inverter brings many advantages such as a reduction in harmonics,and precise and rapid tracking of the references.Simulations are performed for a three-level inverter with SM-DTC,a two-level inverter with SM-DTC and the three-level inverter with PI-DTC-SPWM.The results show that the SM-DTC method achieves better performance in terms of reference tracking,while adoption of the threelevel inverter topology can effectively reduce the ripples.Applying the SM-DTC to the three-level inverter presents the best solution for achieving efficient and robust control.In addition,the use of a sliding mode speed estimator eliminates the mechanical sensor and this increases the reliability of the system.
文摘This article presents the direct torque control (DTC) strategy for the doubly fed induction motor (DFIM) connected to two three-level voltage source inverters (3LVSIs) with neutral point clamped (NPC) structure. This control method allows to reduce the torque and flux ripples as well as to optimize the total harmonic distortion (THD) of motor currents. The use of 3LVSI increases the number of generated voltage, which allows improving the quality of its waveform and thus improves the DTC strategy. The system modeling and control are implemented in Matlab/Simulink environment. The analysis of simulation results shows the better performances of this control, especially in terms of torque and flux behavior, compared to conventional DTC.
基金supported by the National Natural Science Foundation of China(No.51622706)the Fundamental Research Funds for the Central Universities,China(No.2017XZZX002-17)
文摘Since only one inverter voltage vector is applied during each duty cycle, traditional model predictive direct power control(MPDPC) for grid-connected inverters(GCIs) results in serious harmonics in current and power. Moreover, a high sampling frequency is needed to ensure satisfactory steady-state performance, which is contradictory to its long execution time due to the iterative prediction calculations. To solve these problems, a novel dead-beat MPDPC strategy is proposed, using two active inverter voltage vectors and one zero inverter voltage vector during each duty cycle. Adoption of three inverter vectors ensures a constant switching frequency. Thus, smooth steady-state performance of both current and power can be obtained. Unlike the traditional three-vector based MPDPC strategy, the proposed three vectors are selected based on the power errors rather than the sector where the grid voltage vector is located, which ensures that the duration times of the selected vectors are positive all the time. Iterative calculations of the cost function in traditional predictive control are also removed, which makes the proposed strategy easy to implement on digital signal processors(DSPs) for industrial applications. Results of experiments based on a 1 kW inverter setup validate the feasibility of the proposed three-vector based dead-beat MPDPC strategy.