An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption l...An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.展开更多
In contrast to the Pacific and Atlantic Oceans,the Indian Ocean has lacked in-situ observations of wind profiles over open sea areas for decades.In 2021,a shipborne coherent Doppler lidar(CDL)was used to observe in-si...In contrast to the Pacific and Atlantic Oceans,the Indian Ocean has lacked in-situ observations of wind profiles over open sea areas for decades.In 2021,a shipborne coherent Doppler lidar(CDL)was used to observe in-situ wind profiles in the eastern tropical Indian Ocean.This equipment successfully captured low-level jets(LLJs)in the region,and their characteristics were thoroughly analyzed.Results reveal that the observed wind speed of LLJs in the eastern Indian Ocean ranges from 6 m s^(-1) to 10 m s^(-1) during the boreal winter and spring seasons,showing a height range of 0.6 to 1 km and two peak times at 0800 and 2000 UTC.This wind shear is weaker than that in land or offshore areas,ranging from 0 s^(-1) to 0.006 s^(-1).Moreover,the accuracy of the CDL data is compared to that of ERA5 data in the study area.The results indicate that the zonal wind from ERA5 data significantly deviated from the CDL measurement data,and the overall ERA5 data are substantially weaker than the in-situ observations.Notably,ERA5 underestimates northwestward LLJs.展开更多
Pulse echo accumulation is commonly employed in coherent Doppler wind LiDAR(light detection and ranging)under the assumption of steady wind.Here,the measured spectral data are analyzed in the time dimension and freque...Pulse echo accumulation is commonly employed in coherent Doppler wind LiDAR(light detection and ranging)under the assumption of steady wind.Here,the measured spectral data are analyzed in the time dimension and frequency dimension to cope with the temporal wind shear and achieve the optimal accumulation time.A hardware-efficient algorithm combining the interpolation and cross-correlation is used to enhance the wind retrieval accuracy by reducing the frequency sampling interval and then reduce the spectral width calculation error.Moreover,the temporal broadening effect and spatial broadening effect are decoupled according to the strategy we developed.展开更多
As a new type of wind field detection equipment, coherent Doppler wind lidar(CDWL) still needs more relevant observation experiments to compare and verify whether it can achieve the accuracy and precision of tradition...As a new type of wind field detection equipment, coherent Doppler wind lidar(CDWL) still needs more relevant observation experiments to compare and verify whether it can achieve the accuracy and precision of traditional observation equipment in urban areas. In this experiment, a self-developed CDWL provided four months of observations in the southern Beijing area. After the data acquisition time and height match, the wind profile data obtained based on a Doppler beam swinging(DBS) five-beam inversion algorithm were compared with radiosonde data released from the same location. The standard deviation(SD) of wind speed is 0.8 m s^(–1), and the coefficient of determination R~2 is 0.95. The SD of the wind direction is 17.7° with an R~2 of 0.96. Below the height of the roughness sublayer(about 400 m), the error in wind speed and wind direction is significantly greater than the error above the height of the boundary layer(about 1500 m). For the case of wind speeds less than 4 m s^(–1), the error of wind direction is more significant and is affected by the distribution of surrounding buildings. Averaging at different height levels using suitable time windows can effectively reduce the effects of turbulence and thus reduce the error caused by the different measurement methods of the two devices.展开更多
The mobile incoherent Doppler lidar (MIDL), which was jointly developed by State Key Laboratory of Severe Weather (LaSW) of the Chinese Academy of Meteorological Sciences (CAMS) and Ocean University of China, pr...The mobile incoherent Doppler lidar (MIDL), which was jointly developed by State Key Laboratory of Severe Weather (LaSW) of the Chinese Academy of Meteorological Sciences (CAMS) and Ocean University of China, provided meteorological services during the Olympic sailing events in Qingdao in 2008. In this study, two experiments were performed based on these measurements. First, the capabilities of MIDL detection of sea-surface winds were investigated by comparing its radial velocities with those from a sea buoy. MIDL radial velocity was almost consistent with sea-buoy data; both reflected the changes in wind with time. However, the MIDL data was 0.5 m s-1 lower on average than the sea-buoy data due to differences in detection principle, sample volume, sample interval, spatial and temporal resolution. Second, the wind fields during the Olympic sailing events were calculated using a four-dimensional variation data assimilation (4DVAR) algorithm and were evaluated by comparing them with data from a sea buoy. The results show that the calculations made with the 4DVAR wind retrieval method are able to simulate the fine retrieval of sea-surface wind data--the retrieved wind fields were consistent with those of sea-buoy data. Overall, the correlation coefficient of wind direction was 0.93, and the correlation coefficient of wind speed was 0.70. The distribution of retrieval wind fields was consistent with that of MIDL radial velocity; the root-mean-square error between them had an average of only 1.52 m s-1^.展开更多
A correction considering the effects of atmospheric temperature, pressure, and Mie contamination must be performed for wind retrieval from a Rayleigh Doppler lidar(RDL), since the so-called Rayleigh response is dire...A correction considering the effects of atmospheric temperature, pressure, and Mie contamination must be performed for wind retrieval from a Rayleigh Doppler lidar(RDL), since the so-called Rayleigh response is directly related to the convolution of the optical transmission of the frequency discriminator and the Rayleigh–Brillouin spectrum of the molecular backscattering. Thus, real-time and on-site profiles of atmospheric pressure, temperature, and aerosols should be provided as inputs to the wind retrieval. Firstly, temperature profiles under 35 km and above the altitude are retrieved, respectively,from a high spectral resolution lidar(HSRL) and a Rayleigh integration lidar(RIL) incorporating to the RDL. Secondly,the pressure profile is taken from the European Center for Medium range Weather Forecast(ECMWF) analysis, while radiosonde data are not available. Thirdly, the Klett–Fernald algorithms are adopted to estimate the Mie and Rayleigh components in the atmospheric backscattering. After that, the backscattering ratio is finally determined in a nonlinear fitting of the transmission of the atmospheric backscattering through the Fabry–Perot interferometer(FPI) to a proposed model.In the validation experiments, wind profiles from the lidar show good agreement with the radiosonde in the overlapping altitude. Finally, a continuous wind observation shows the stability of the correction scheme.展开更多
For the nonlinearity of Fabry-Perot interferometer(FPI) transmission spectrum,the measurement uncertainty of incoherent Mie Doppler wind lidar based on it increases evidently with the increase of backscattering sign...For the nonlinearity of Fabry-Perot interferometer(FPI) transmission spectrum,the measurement uncertainty of incoherent Mie Doppler wind lidar based on it increases evidently with the increase of backscattering signal Doppler shift.A method of repeating the use of the approximate linear part of FPI transmission spectra for reducing the high uncertainty of a big Doppler shift is proposed.One of the ways of realizing this method is discussed in detail,in which the characteristics of FPI transmission spectrum changing with thickness and incident angle are utilized simultaneously.Under different atmosphere conditions,it has been proved theoretically that the range of measurement uncertainty drops to one-sixth while its minimum has no serious change.This method can be used not only to guide the new system design,but also as a new working way for the fabricated system.展开更多
A mobile Rayleigh Doppler lidar based on double-edge technique is implemented for simultaneously observing wind and temperature at heights of 15 km-60 km away from ground.Before the inversion of the Doppler shift due ...A mobile Rayleigh Doppler lidar based on double-edge technique is implemented for simultaneously observing wind and temperature at heights of 15 km-60 km away from ground.Before the inversion of the Doppler shift due to wind,the Rayleigh response function should be calculated,which is a convolution of the laser spectrum,Rayleigh backscattering function,and the transmission function of the Fabry-Perot interferometer used as the frequency discriminator in the lidar.An analysis of the influence of the temperature on the accuracy of the Une-of-sight winds shows that real-time temperature profiles are needed because the bandwidth of the Rayleigh backscattering function is temperature-dependent.An integration method is employed in the inversion of the temperature,where the convergence of this method and the high signal-to-noise ratio below 60 km ensure the accuracy and precision of the temperature profiles inverted.Then,real-time and on-site temperature profiles are applied to correct the wind instead of using temperature profiles from a numerical prediction system or atmosphere model.The corrected wind profiles show satisfactory agreement with the wind profiles acquired from radiosondes,proving the reliability of the method.展开更多
Although coherent Doppler wind lidar(CDWL)is promising in detecting boundary layer height(BLH),differences between BLH results are observed when different CDWL measurements are used as tracers.Here,a robust solution f...Although coherent Doppler wind lidar(CDWL)is promising in detecting boundary layer height(BLH),differences between BLH results are observed when different CDWL measurements are used as tracers.Here,a robust solution for BLH detections with CDWL is proposed and demonstrated:mixed layer height(MLH)is retrieved best from turbulent kinetic energy dissipation rate(TKEDR),while stable boundary layer height(SBLH)and residual layer height(RLH)can be retrieved from carrier-to-noise ratio(CNR).To study the cause of the BLH differences,an intercomparison experiment is designed with two identical CDWLs,where only one is equipped with a stability control subsystem.During the experiment,it is found that the CNR could be distorted by instrument instability because the coupling efficiency from free-space to the polarization-maintaining fiber of the telescope is sensitive to the surrounding environment.In the ML,a bias up to 2.13 km of the MLH from CNR is found,which is caused by the CNR deviation.In contrast,the MLH from TKEDR is robust as long as the accuracy of wind is guaranteed.In the SBL(RL),the CNR is found capable to retrieve SBLH and RLH simultaneously and robustly.This solution is tested during an observation period over one month.Statistical analysis shows that the root-mean-square errors(RMSE)in the MLH,SBLH,and RLH are 0.28 km,0.23 km,and 0.24 km,respectively.展开更多
A mobile molecular Doppler wind lidar (DWL) based on the double-edge technique is described for wind measurement from 10 km to 40 km altitude.Two edge filters located in the wings of the thermally broadened molecular ...A mobile molecular Doppler wind lidar (DWL) based on the double-edge technique is described for wind measurement from 10 km to 40 km altitude.Two edge filters located in the wings of the thermally broadened molecular backscattered signal spectrum at 355 nm are employed as a frequency discriminator to determine the Doppler shift proportional to the wind velocity.The lidar operates at 355 nm with a 45 cm aperture telescope and a matching azimuth-over-elevation scanner that can provide full hemispherical pointing.Intercomparison experiments of the lidar wind profile measurement are performed with collocated pilot balloon.The results show that the standard deviation of wind speed and direction are less than 10m/s and 30° in the 5-40 km altitude range,respectively.The small mean difference and normal distribution between DWL and pilot balloon data and the transient eddy of the west-wind jet observed demonstrate that the DWL consistently measures the wind with acceptable random errors.展开更多
Shipborne observations obtained with the coherent Doppler lidar(CDL)and radiosonde during 2014 campaign were used to study the structure of marine boundary layer in the Yellow Sea.Vertical wind profiles corrected for ...Shipborne observations obtained with the coherent Doppler lidar(CDL)and radiosonde during 2014 campaign were used to study the structure of marine boundary layer in the Yellow Sea.Vertical wind profiles corrected for ship motion was used to derive higher-order statistics,showing that motion correction is required and significant for turbulence analysis.During a day with weak mesoscale activity,a complexed three-layer structure system was observed.The lowest layer showed a typical stable boundary layer structure feature.An aerosol layer with abrupt variation in wind speed and relative humidity always appeared at the middle layer,the formation of which may be due to Kelvin-Helmholz instability.The top layer encountered a dramatic change in wind direction,which may result from the warm advection from the Eurasian continent on the basis of backward trajectory analysis.Furthermore,the MABL height in stable regime was derived from potential temperature,CDL signal-to-noise ratio(SNR)and CDL vertical velocity variance,respectively.The stable boundary layer(SBL)height in SBL can be derived from the inversion layer of potential temperature profile,and the mixing height in SBL can be retrieved from the vertical velocity variance gradient method.Neither the SBL height nor the mixing height is in agreement with the height retrieved from CDL SNR gradient method because of different definition and criterion.One of the limitations of SNR gradient method for MABL retrieval is that it is easier to be affected by the lofted decoupled aerosol layer,where the retrieved result is less suitable.Finally,the higher-order vertical velocity statistics within the marine stable boundary layer were investigated and compared with the previous studies,and different turbulence mechanisms have an important effect on the statistics deviation.展开更多
A method of spectrum estimation based on the genetic simulated annealing(GSA)algorithm is proposed,which is applied to retrieve the three-dimensional wind field of typhoon Nangka observed by our research group.Compare...A method of spectrum estimation based on the genetic simulated annealing(GSA)algorithm is proposed,which is applied to retrieve the three-dimensional wind field of typhoon Nangka observed by our research group.Compared to the genetic algorithm(GA),the GSA algorithm not only extends the detection range and guarantees the accuracy of retrieval results but also demonstrates a faster retrieval speed.Experimental results indicate that both the GA and GSA algorithms can enhance the detection range by 35%more than the least squares method.However,the convergence speed of the GSA algorithm is 17 times faster than that of the GA,which is more beneficial for real-time data processing.展开更多
文摘An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.
基金supported by the Taishan Scholars Programs of Shandong Province(No.tsqn201909165)the Global Change and Air-Sea Interaction Program(Nos.GASI-04-QYQH-03,GASI-01-WIND-STwin)the National Natural Science Foundation of China(Nos.41876028,42349910).
文摘In contrast to the Pacific and Atlantic Oceans,the Indian Ocean has lacked in-situ observations of wind profiles over open sea areas for decades.In 2021,a shipborne coherent Doppler lidar(CDL)was used to observe in-situ wind profiles in the eastern tropical Indian Ocean.This equipment successfully captured low-level jets(LLJs)in the region,and their characteristics were thoroughly analyzed.Results reveal that the observed wind speed of LLJs in the eastern Indian Ocean ranges from 6 m s^(-1) to 10 m s^(-1) during the boreal winter and spring seasons,showing a height range of 0.6 to 1 km and two peak times at 0800 and 2000 UTC.This wind shear is weaker than that in land or offshore areas,ranging from 0 s^(-1) to 0.006 s^(-1).Moreover,the accuracy of the CDL data is compared to that of ERA5 data in the study area.The results indicate that the zonal wind from ERA5 data significantly deviated from the CDL measurement data,and the overall ERA5 data are substantially weaker than the in-situ observations.Notably,ERA5 underestimates northwestward LLJs.
基金Project supported by the Shanghai Science and Technology Innovation Action(Grant No.22dz1208700).
文摘Pulse echo accumulation is commonly employed in coherent Doppler wind LiDAR(light detection and ranging)under the assumption of steady wind.Here,the measured spectral data are analyzed in the time dimension and frequency dimension to cope with the temporal wind shear and achieve the optimal accumulation time.A hardware-efficient algorithm combining the interpolation and cross-correlation is used to enhance the wind retrieval accuracy by reducing the frequency sampling interval and then reduce the spectral width calculation error.Moreover,the temporal broadening effect and spatial broadening effect are decoupled according to the strategy we developed.
基金financially supported by the National Key R&D Program of China (2022YFC3700400&2022YFB3901700)。
文摘As a new type of wind field detection equipment, coherent Doppler wind lidar(CDWL) still needs more relevant observation experiments to compare and verify whether it can achieve the accuracy and precision of traditional observation equipment in urban areas. In this experiment, a self-developed CDWL provided four months of observations in the southern Beijing area. After the data acquisition time and height match, the wind profile data obtained based on a Doppler beam swinging(DBS) five-beam inversion algorithm were compared with radiosonde data released from the same location. The standard deviation(SD) of wind speed is 0.8 m s^(–1), and the coefficient of determination R~2 is 0.95. The SD of the wind direction is 17.7° with an R~2 of 0.96. Below the height of the roughness sublayer(about 400 m), the error in wind speed and wind direction is significantly greater than the error above the height of the boundary layer(about 1500 m). For the case of wind speeds less than 4 m s^(–1), the error of wind direction is more significant and is affected by the distribution of surrounding buildings. Averaging at different height levels using suitable time windows can effectively reduce the effects of turbulence and thus reduce the error caused by the different measurement methods of the two devices.
基金supported by National Natural Science Foundation of China (Grant Nos. 40975014 and 40975013)
文摘The mobile incoherent Doppler lidar (MIDL), which was jointly developed by State Key Laboratory of Severe Weather (LaSW) of the Chinese Academy of Meteorological Sciences (CAMS) and Ocean University of China, provided meteorological services during the Olympic sailing events in Qingdao in 2008. In this study, two experiments were performed based on these measurements. First, the capabilities of MIDL detection of sea-surface winds were investigated by comparing its radial velocities with those from a sea buoy. MIDL radial velocity was almost consistent with sea-buoy data; both reflected the changes in wind with time. However, the MIDL data was 0.5 m s-1 lower on average than the sea-buoy data due to differences in detection principle, sample volume, sample interval, spatial and temporal resolution. Second, the wind fields during the Olympic sailing events were calculated using a four-dimensional variation data assimilation (4DVAR) algorithm and were evaluated by comparing them with data from a sea buoy. The results show that the calculations made with the 4DVAR wind retrieval method are able to simulate the fine retrieval of sea-surface wind data--the retrieved wind fields were consistent with those of sea-buoy data. Overall, the correlation coefficient of wind direction was 0.93, and the correlation coefficient of wind speed was 0.70. The distribution of retrieval wind fields was consistent with that of MIDL radial velocity; the root-mean-square error between them had an average of only 1.52 m s-1^.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41174131,41274151,41304123,41121003 and 41025016)
文摘A correction considering the effects of atmospheric temperature, pressure, and Mie contamination must be performed for wind retrieval from a Rayleigh Doppler lidar(RDL), since the so-called Rayleigh response is directly related to the convolution of the optical transmission of the frequency discriminator and the Rayleigh–Brillouin spectrum of the molecular backscattering. Thus, real-time and on-site profiles of atmospheric pressure, temperature, and aerosols should be provided as inputs to the wind retrieval. Firstly, temperature profiles under 35 km and above the altitude are retrieved, respectively,from a high spectral resolution lidar(HSRL) and a Rayleigh integration lidar(RIL) incorporating to the RDL. Secondly,the pressure profile is taken from the European Center for Medium range Weather Forecast(ECMWF) analysis, while radiosonde data are not available. Thirdly, the Klett–Fernald algorithms are adopted to estimate the Mie and Rayleigh components in the atmospheric backscattering. After that, the backscattering ratio is finally determined in a nonlinear fitting of the transmission of the atmospheric backscattering through the Fabry–Perot interferometer(FPI) to a proposed model.In the validation experiments, wind profiles from the lidar show good agreement with the radiosonde in the overlapping altitude. Finally, a continuous wind observation shows the stability of the correction scheme.
基金Project supported by the International Cooperative Project between China and Russia,Research on the Ocean/Atmosphere Lidar (Grant No. 2008DFR10170)
文摘For the nonlinearity of Fabry-Perot interferometer(FPI) transmission spectrum,the measurement uncertainty of incoherent Mie Doppler wind lidar based on it increases evidently with the increase of backscattering signal Doppler shift.A method of repeating the use of the approximate linear part of FPI transmission spectra for reducing the high uncertainty of a big Doppler shift is proposed.One of the ways of realizing this method is discussed in detail,in which the characteristics of FPI transmission spectrum changing with thickness and incident angle are utilized simultaneously.Under different atmosphere conditions,it has been proved theoretically that the range of measurement uncertainty drops to one-sixth while its minimum has no serious change.This method can be used not only to guide the new system design,but also as a new working way for the fabricated system.
基金supported by the National Natural Science Foundation of China(Grant Nos.41174130,41174131,41274151,and 41304123)
文摘A mobile Rayleigh Doppler lidar based on double-edge technique is implemented for simultaneously observing wind and temperature at heights of 15 km-60 km away from ground.Before the inversion of the Doppler shift due to wind,the Rayleigh response function should be calculated,which is a convolution of the laser spectrum,Rayleigh backscattering function,and the transmission function of the Fabry-Perot interferometer used as the frequency discriminator in the lidar.An analysis of the influence of the temperature on the accuracy of the Une-of-sight winds shows that real-time temperature profiles are needed because the bandwidth of the Rayleigh backscattering function is temperature-dependent.An integration method is employed in the inversion of the temperature,where the convergence of this method and the high signal-to-noise ratio below 60 km ensure the accuracy and precision of the temperature profiles inverted.Then,real-time and on-site temperature profiles are applied to correct the wind instead of using temperature profiles from a numerical prediction system or atmosphere model.The corrected wind profiles show satisfactory agreement with the wind profiles acquired from radiosondes,proving the reliability of the method.
文摘Although coherent Doppler wind lidar(CDWL)is promising in detecting boundary layer height(BLH),differences between BLH results are observed when different CDWL measurements are used as tracers.Here,a robust solution for BLH detections with CDWL is proposed and demonstrated:mixed layer height(MLH)is retrieved best from turbulent kinetic energy dissipation rate(TKEDR),while stable boundary layer height(SBLH)and residual layer height(RLH)can be retrieved from carrier-to-noise ratio(CNR).To study the cause of the BLH differences,an intercomparison experiment is designed with two identical CDWLs,where only one is equipped with a stability control subsystem.During the experiment,it is found that the CNR could be distorted by instrument instability because the coupling efficiency from free-space to the polarization-maintaining fiber of the telescope is sensitive to the surrounding environment.In the ML,a bias up to 2.13 km of the MLH from CNR is found,which is caused by the CNR deviation.In contrast,the MLH from TKEDR is robust as long as the accuracy of wind is guaranteed.In the SBL(RL),the CNR is found capable to retrieve SBLH and RLH simultaneously and robustly.This solution is tested during an observation period over one month.Statistical analysis shows that the root-mean-square errors(RMSE)in the MLH,SBLH,and RLH are 0.28 km,0.23 km,and 0.24 km,respectively.
基金Supported by the National High-Tech Research and Development Program of China,and Key Laboratory of Geodesy Environment and Geodesy Ministry of Education(L08-3).
文摘A mobile molecular Doppler wind lidar (DWL) based on the double-edge technique is described for wind measurement from 10 km to 40 km altitude.Two edge filters located in the wings of the thermally broadened molecular backscattered signal spectrum at 355 nm are employed as a frequency discriminator to determine the Doppler shift proportional to the wind velocity.The lidar operates at 355 nm with a 45 cm aperture telescope and a matching azimuth-over-elevation scanner that can provide full hemispherical pointing.Intercomparison experiments of the lidar wind profile measurement are performed with collocated pilot balloon.The results show that the standard deviation of wind speed and direction are less than 10m/s and 30° in the 5-40 km altitude range,respectively.The small mean difference and normal distribution between DWL and pilot balloon data and the transient eddy of the west-wind jet observed demonstrate that the DWL consistently measures the wind with acceptable random errors.
基金National High Technology R&D Program of China(No.2014AA09A511)National Natural Science Foundation of China(Nos.41471309+3 种基金4137501661975191)National Key R&D Program of China(No.2016YFC1400904)The first author is supported by China Scholarship Council (CSC number: 201706330031). The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and ECMWF for providing reanalysis datasets the in this publication.
文摘Shipborne observations obtained with the coherent Doppler lidar(CDL)and radiosonde during 2014 campaign were used to study the structure of marine boundary layer in the Yellow Sea.Vertical wind profiles corrected for ship motion was used to derive higher-order statistics,showing that motion correction is required and significant for turbulence analysis.During a day with weak mesoscale activity,a complexed three-layer structure system was observed.The lowest layer showed a typical stable boundary layer structure feature.An aerosol layer with abrupt variation in wind speed and relative humidity always appeared at the middle layer,the formation of which may be due to Kelvin-Helmholz instability.The top layer encountered a dramatic change in wind direction,which may result from the warm advection from the Eurasian continent on the basis of backward trajectory analysis.Furthermore,the MABL height in stable regime was derived from potential temperature,CDL signal-to-noise ratio(SNR)and CDL vertical velocity variance,respectively.The stable boundary layer(SBL)height in SBL can be derived from the inversion layer of potential temperature profile,and the mixing height in SBL can be retrieved from the vertical velocity variance gradient method.Neither the SBL height nor the mixing height is in agreement with the height retrieved from CDL SNR gradient method because of different definition and criterion.One of the limitations of SNR gradient method for MABL retrieval is that it is easier to be affected by the lofted decoupled aerosol layer,where the retrieved result is less suitable.Finally,the higher-order vertical velocity statistics within the marine stable boundary layer were investigated and compared with the previous studies,and different turbulence mechanisms have an important effect on the statistics deviation.
基金supported by the Pre-research Project of Civilian Space(No.D040103)the Joint Project of National Natural Science Foundation of China(No.U23A20379)。
文摘A method of spectrum estimation based on the genetic simulated annealing(GSA)algorithm is proposed,which is applied to retrieve the three-dimensional wind field of typhoon Nangka observed by our research group.Compared to the genetic algorithm(GA),the GSA algorithm not only extends the detection range and guarantees the accuracy of retrieval results but also demonstrates a faster retrieval speed.Experimental results indicate that both the GA and GSA algorithms can enhance the detection range by 35%more than the least squares method.However,the convergence speed of the GSA algorithm is 17 times faster than that of the GA,which is more beneficial for real-time data processing.