Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot.However,there are some problems that the features of different sizes and different directions are not sufficient when extracting the f...Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot.However,there are some problems that the features of different sizes and different directions are not sufficient when extracting the features in lung X-ray images.A pneumonia classification model based on multi-scale directional feature enhancement MSD-Net is proposed in this paper.The main innovations are as follows:Firstly,the Multi-scale Residual Feature Extraction Module(MRFEM)is designed to effectively extract multi-scale features.The MRFEM uses dilated convolutions with different expansion rates to increase the receptive field and extract multi-scale features effectively.Secondly,the Multi-scale Directional Feature Perception Module(MDFPM)is designed,which uses a three-branch structure of different sizes convolution to transmit direction feature layer by layer,and focuses on the target region to enhance the feature information.Thirdly,the Axial Compression Former Module(ACFM)is designed to perform global calculations to enhance the perception ability of global features in different directions.To verify the effectiveness of the MSD-Net,comparative experiments and ablation experiments are carried out.In the COVID-19 RADIOGRAPHY DATABASE,the Accuracy,Recall,Precision,F1 Score,and Specificity of MSD-Net are 97.76%,95.57%,95.52%,95.52%,and 98.51%,respectively.In the chest X-ray dataset,the Accuracy,Recall,Precision,F1 Score and Specificity of MSD-Net are 97.78%,95.22%,96.49%,95.58%,and 98.11%,respectively.This model improves the accuracy of lung image recognition effectively and provides an important clinical reference to pneumonia Computer-Aided Diagnosis.展开更多
Palmprint recognition is an emerging biometrics technology that has attracted increasing attention in recent years. Many palmprint recognition methods have been proposed, including traditional methods and deep learnin...Palmprint recognition is an emerging biometrics technology that has attracted increasing attention in recent years. Many palmprint recognition methods have been proposed, including traditional methods and deep learning-based methods. Among the traditional methods, the methods based on directional features are mainstream because they have high recognition rates and are robust to illumination changes and small noises. However, to date, in these methods, the stability of the palmprint directional response has not been deeply studied. In this paper, we analyse the problem of directional response instability in palmprint recognition methods based on directional feature. We then propose a novel palmprint directional response stability measurement (DRSM) to judge the stability of the directional feature of each pixel. After filtering the palmprint image with the filter bank, we design DRSM according to the relationship between the maximum response value and other response values for each pixel. Using DRSM, we can judge those pixels with unstable directional response and use a specially designed encoding mode related to a specific method. We insert the DRSM mechanism into seven classical methods based on directional feature, and conduct many experiments on six public palmprint databases. The experimental results show that the DRSM mechanism can effectively improve the performance of these methods. In the field of palmprint recognition, this work is the first in-depth study on the stability of the palmprint directional response, so this paper has strong reference value for research on palmprint recognition methods based on directional features.展开更多
Direction navigability analysis is a supplement to the navigability analysis theory, in which extraction of the direction suitable-matching features(DSMFs) determines the evaluation performance. A method based on the ...Direction navigability analysis is a supplement to the navigability analysis theory, in which extraction of the direction suitable-matching features(DSMFs) determines the evaluation performance. A method based on the Gabor filter is proposed to estimate the direction navigability of the geomagnetic field. First,the DSMFs are extracted based on the Gabor filter’s responses.Second, in the view of pattern recognition, the classification accuracy in fault diagnosis is introduced as the objective function of the hybrid particle swarm optimization(HPSO) algorithm to optimize the Gabor filter’s parameters. With its guidance, the DSMFs are extracted. Finally, a direction navigability analysis model is established with the support vector machine(SVM), and the performances of the models under different objective functions are discussed. Simulation results show the parameters of the Gabor filter have a significant influence on the DSMFs, which, in turn, affects the analysis results of direction navigability. Moreover, the risk of misclassification can be effectively reduced by using the analysis model with optimal Gabor filter parameters. The proposed method is not restricted in geomagnetic navigation, and it also can be used in other fields such as terrain matching and gravity navigation.展开更多
It is difficult to analyze semantic relations automatically, especially the semantic relations of Chinese special sentence patterns. In this paper, we apply a novel model feature structure to represent Chinese semanti...It is difficult to analyze semantic relations automatically, especially the semantic relations of Chinese special sentence patterns. In this paper, we apply a novel model feature structure to represent Chinese semantic relations, which is formalized as "recursive directed graph". We focus on Chinese special sentence patterns, including the complex noun phrase, verb-complement structure, pivotal sentences, serial verb sentence and subject-predicate predicate sentence. Feature structure facilitates a richer Chinese semantic information extraction when compared with dependency structure. The results show that using recursive directed graph is more suitable for extracting Chinese complex semantic relations.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant No.62062003)Natural Science Foundation of Ningxia(Grant No.2023AAC03293).
文摘Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot.However,there are some problems that the features of different sizes and different directions are not sufficient when extracting the features in lung X-ray images.A pneumonia classification model based on multi-scale directional feature enhancement MSD-Net is proposed in this paper.The main innovations are as follows:Firstly,the Multi-scale Residual Feature Extraction Module(MRFEM)is designed to effectively extract multi-scale features.The MRFEM uses dilated convolutions with different expansion rates to increase the receptive field and extract multi-scale features effectively.Secondly,the Multi-scale Directional Feature Perception Module(MDFPM)is designed,which uses a three-branch structure of different sizes convolution to transmit direction feature layer by layer,and focuses on the target region to enhance the feature information.Thirdly,the Axial Compression Former Module(ACFM)is designed to perform global calculations to enhance the perception ability of global features in different directions.To verify the effectiveness of the MSD-Net,comparative experiments and ablation experiments are carried out.In the COVID-19 RADIOGRAPHY DATABASE,the Accuracy,Recall,Precision,F1 Score,and Specificity of MSD-Net are 97.76%,95.57%,95.52%,95.52%,and 98.51%,respectively.In the chest X-ray dataset,the Accuracy,Recall,Precision,F1 Score and Specificity of MSD-Net are 97.78%,95.22%,96.49%,95.58%,and 98.11%,respectively.This model improves the accuracy of lung image recognition effectively and provides an important clinical reference to pneumonia Computer-Aided Diagnosis.
基金supported by National Science Foundation of China(No.62076086).
文摘Palmprint recognition is an emerging biometrics technology that has attracted increasing attention in recent years. Many palmprint recognition methods have been proposed, including traditional methods and deep learning-based methods. Among the traditional methods, the methods based on directional features are mainstream because they have high recognition rates and are robust to illumination changes and small noises. However, to date, in these methods, the stability of the palmprint directional response has not been deeply studied. In this paper, we analyse the problem of directional response instability in palmprint recognition methods based on directional feature. We then propose a novel palmprint directional response stability measurement (DRSM) to judge the stability of the directional feature of each pixel. After filtering the palmprint image with the filter bank, we design DRSM according to the relationship between the maximum response value and other response values for each pixel. Using DRSM, we can judge those pixels with unstable directional response and use a specially designed encoding mode related to a specific method. We insert the DRSM mechanism into seven classical methods based on directional feature, and conduct many experiments on six public palmprint databases. The experimental results show that the DRSM mechanism can effectively improve the performance of these methods. In the field of palmprint recognition, this work is the first in-depth study on the stability of the palmprint directional response, so this paper has strong reference value for research on palmprint recognition methods based on directional features.
基金supported by the Key Project of Military Research on Weapons and Equipment(2014551)
文摘Direction navigability analysis is a supplement to the navigability analysis theory, in which extraction of the direction suitable-matching features(DSMFs) determines the evaluation performance. A method based on the Gabor filter is proposed to estimate the direction navigability of the geomagnetic field. First,the DSMFs are extracted based on the Gabor filter’s responses.Second, in the view of pattern recognition, the classification accuracy in fault diagnosis is introduced as the objective function of the hybrid particle swarm optimization(HPSO) algorithm to optimize the Gabor filter’s parameters. With its guidance, the DSMFs are extracted. Finally, a direction navigability analysis model is established with the support vector machine(SVM), and the performances of the models under different objective functions are discussed. Simulation results show the parameters of the Gabor filter have a significant influence on the DSMFs, which, in turn, affects the analysis results of direction navigability. Moreover, the risk of misclassification can be effectively reduced by using the analysis model with optimal Gabor filter parameters. The proposed method is not restricted in geomagnetic navigation, and it also can be used in other fields such as terrain matching and gravity navigation.
基金Supported by the National Natural Science Foundation of China(61202193,61202304)the Major Projects of Chinese National Social Science Foundation(11&ZD189)+2 种基金the Chinese Postdoctoral Science Foundation(2013M540593,2014T70722)the Accomplishments of Listed Subjects in Hubei Prime Subject Developmentthe Open Foundation of Shandong Key Lab of Language Resource Development and Application
文摘It is difficult to analyze semantic relations automatically, especially the semantic relations of Chinese special sentence patterns. In this paper, we apply a novel model feature structure to represent Chinese semantic relations, which is formalized as "recursive directed graph". We focus on Chinese special sentence patterns, including the complex noun phrase, verb-complement structure, pivotal sentences, serial verb sentence and subject-predicate predicate sentence. Feature structure facilitates a richer Chinese semantic information extraction when compared with dependency structure. The results show that using recursive directed graph is more suitable for extracting Chinese complex semantic relations.