The existing direction-of-arrival(DOA)estimation methods only utilize the current received signals,which are susceptible to noise.In this paper,a method for DOA estimation based on a motion platform is proposed to ach...The existing direction-of-arrival(DOA)estimation methods only utilize the current received signals,which are susceptible to noise.In this paper,a method for DOA estimation based on a motion platform is proposed to achieve high-precision DOA estimation by utilizing past and present signals.The concept of synthetic aperture is introduced to construct a linear DOA estima-tion model.A DOA fine-tuning method based on the linear model is proposed to eliminate the lin-ear DOA variation,achieving a non-coherent accumulation of DOA estimations.Moreover,the baseband modulation and the phase modulation caused by the range history are compensated to achieve the coherent accumulation of all the DOA estimations.Simulation results show that the proposed method can significantly improve the DOA estimated accuracy at low signal-to-noise ratios(SNR).展开更多
Despite some efforts and attempts have been made to improve the direction-of-arrival(DOA)estimation performance of the standard Capon beamformer(SCB)in array processing,rigorous statistical performance analyses of the...Despite some efforts and attempts have been made to improve the direction-of-arrival(DOA)estimation performance of the standard Capon beamformer(SCB)in array processing,rigorous statistical performance analyses of these modified Capon estimators are still lacking.This paper studies an improved Capon estimator(ICE)for estimating the DOAs of multiple uncorrelated narrowband signals,where the higherorder inverse(sample)array covariance matrix is used in the Capon-like cost function.By establishing the relationship between this nonparametric estimator and the parametric and classic subspace-based MUSIC(multiple signal classification),it is clarified that as long as the power order of the inverse covariance matrix is increased to reduce the influence of signal subspace components in the ICE,the estimation performance of the ICE becomes equivalent to that of the MUSIC regardless of the signal-to-noise ratio(SNR).Furthermore the statistical performance of the ICE is analyzed,and the large-sample mean-squared-error(MSE)expression of the estimated DOA is derived.Finally the effectiveness and the theoretical analysis of the ICE are substantiated through numerical examples,where the Cramer-Rao lower bound(CRB)is used to evaluate the validity of the derived asymptotic MSE expression.展开更多
Generally,due to the limitation of the dimension of the array aperture,linear arrays cannot achieve two-dimensional(2D)direction of arrival(DOA)estimation.But the emergence of array motion provides a chance for that.I...Generally,due to the limitation of the dimension of the array aperture,linear arrays cannot achieve two-dimensional(2D)direction of arrival(DOA)estimation.But the emergence of array motion provides a chance for that.In this paper,a generalized motion scheme and a novel method of 2D DOA estimation are proposed by exploring the linear array motion.To be specific,the linear arrays are controlled to move along an arbitrary direction at a constant velocity and snap per fixed time delay.All the received signals are processed to synthesize the comprehensive observation vector for an extended 2D virtual aperture.Subsequently,since most of 2D DOA estimation methods are not universal to our proposed motion scheme and the reduced-dimensional(RD)method fails to handle the case of the coupled parameters,a decoupled reduced-complexity multiple signals classification(DRC MUSIC)algorithm is designed specifically.Simulation results demonstrate that:a)our proposed scheme can achieve underdetermined 2D DOA estimation just by the linear arrays;b)our designed DRC MUSIC algorithm has the good properties of high accuracy and low complexity;c)our proposed motion scheme with the DRC method has better universality in the motion direction.展开更多
This paper proposes low-cost yet high-accuracy direction of arrival(DOA)estimation for the automotive frequency-modulated continuous-wave(FMcW)radar.The existing subspace-based DOA estimation algorithms suffer fromeit...This paper proposes low-cost yet high-accuracy direction of arrival(DOA)estimation for the automotive frequency-modulated continuous-wave(FMcW)radar.The existing subspace-based DOA estimation algorithms suffer fromeither high computational costs or low accuracy.We aim to solve such contradictory relation between complexity and accuracy by using randomizedmatrix approximation.Specifically,we apply an easily-interpretablerandomized low-rank approximation to the covariance matrix(CM)and R∈C^(M×M)throughthresketch maties in the fom of R≈OBQ^(H).Here the approximately compute its subspaces.That is,we first approximate matrix Q∈C^(M×z)contains the orthonormal basis for the range of the sketchmatrik C∈C^(M×z)cwe whichis etrated fom R using randomized unifom counsampling and B∈C^(z×z)is a weight-matrix reducing the approximation error.Relying on such approximation,we are able to accelerate the subspacecomputation by the orders of the magnitude without compromising estimation accuracy.Furthermore,we drive a theoretical error bound for the suggested scheme to ensure the accuracy of the approximation.As validated by the simulation results,the DOA estimation accuracy of the proposed algorithm,eficient multiple signal classification(E-MUSIC)s high,closely tracks standardMUSIC,and outperforms the well-known algorithms with tremendouslyreduced time complexity.Thus,the devised method can realize high-resolutionreal-time target detection in the emerging multiple input and multiple output(MIMO)automotive radar systems.展开更多
A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm ...A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm inherits all merits of its spectralsearching counterpart except for the applicability to arbitrary array geometry, while reducing considerably the computation cost.Simulation results show that the proposed algorithm outperforms the previously developed closed-form second-order noncircular ESPRIT method, in terms of processing capacity and DOA estimation accuracy, especially in the presence of spatially colored noise.展开更多
A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two...A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two-dimensional vector reconstruction (TSR) method. The key idea is to apply the D3 approach which can extract the signal of given frequency but null out other frequency signals in temporal domain. Then the spatial vector reconstruction processing is used to estimate the angle of the spatial coherent signal source based on extract signal data. Compared with the common temporal and spatial processing approach, the TSR method has a lower computational load, higher real-time performance, robustness and angular accuracy of DOA. The proposed algorithm can be directly applied to the phased array radar of coherent pulses. Simulation results demonstrate the performance of the proposed technique.展开更多
A novel Direction-Of-Arrival (DOA) estimation method is proposed in the presence of mutual coupling using the joint sparse recovery. In the proposed method, the eigenvector corresponding to the maximum eigenvalue of c...A novel Direction-Of-Arrival (DOA) estimation method is proposed in the presence of mutual coupling using the joint sparse recovery. In the proposed method, the eigenvector corresponding to the maximum eigenvalue of covariance matrix of array measurement is viewed as the signal to be represented. By exploiting the geometrical property in steering vectors and the symmetric Toeplitz structure of Mutual Coupling Matrix (MCM), the redundant dictionaries containing the DOA information are constructed. Consequently, the optimization model based on joint sparse recovery is built and then is solved through Second Order Cone Program (SOCP) and Interior Point Method (IPM). The DOA estimates are gotten according to the positions of nonzeros elements. At last, computer simulations demonstrate the excellent performance of the proposed method.展开更多
The Khatri-Rao(KR) subspace method is a high resolution method for direction-of-arrival(DOA) estimation.Combined with 2q level nested array,the KR subspace method can detect O(N2q) sources with N sensors.However,the m...The Khatri-Rao(KR) subspace method is a high resolution method for direction-of-arrival(DOA) estimation.Combined with 2q level nested array,the KR subspace method can detect O(N2q) sources with N sensors.However,the method cannot be applicable to Gaussian sources when q is equal to or greater than 2 since it needs to use 2q-th order cumulants.In this work,a novel approach is presented to conduct DOA estimation by constructing a fourth order difference co-array.Unlike the existing DOA estimation method based on the KR product and 2q level nested array,the proposed method only uses second order statistics,so it can be employed to Gaussian sources as well as non-Gaussian sources.By exploiting a four-level nested array with N elements,our method can also identify O(N4) sources.In order to estimate the wideband signals,the proposed method is extended to the wideband scenarios.Simulation results demonstrate that,compared to the state of the art KR subspace based methods,the new method achieves higher resolution.展开更多
The performance of traditional high-resolution direction-of-arrival(DOA)estimation methods is sensitive to the inaccurate knowledge on prior information,including the position of ar-ray elements,array gain and phase,a...The performance of traditional high-resolution direction-of-arrival(DOA)estimation methods is sensitive to the inaccurate knowledge on prior information,including the position of ar-ray elements,array gain and phase,and the mutual coupling between the array elements.Learning-based methods are data-driven and are expected to perform better than their model-based counter-parts,since they are insensitive to the array imperfections.This paper presents a learning-based method for DOA estimation of multiple wideband far-field sources.The processing procedure mainly includes two steps.First,a beamspace preprocessing structure which has the property of fre-quency invariant is applied to the array outputs to perform focusing over a wide bandwidth.In the second step,a hierarchical deep neural network is employed to achieve classification.Different from neural networks which are trained through a huge data set containing different angle combinations,our deep neural network can achieve DOA estimation of multiple sources with a small data set,since the classifiers can be trained in different small subregions.Simulation results demonstrate that the proposed method performs well both in generalization and imperfections adaptation.展开更多
A new direction-of-arrival (DOA) estimation algorithm for wideband sources is introduced, The new method obtains the output of the virtual arrays in the signal bandwidth using cubic spline function interpolation tec...A new direction-of-arrival (DOA) estimation algorithm for wideband sources is introduced, The new method obtains the output of the virtual arrays in the signal bandwidth using cubic spline function interpolation techniques. The narrowband high- resolution algorithm is then used to get the DOA estimation. This technique does not require any preliminary knowledge of DOA angles. Simulation results demonstrate the effectiveness of the method.展开更多
In this paper, the subspace fitting models for direction-of-arrival (DOA) estimation is analyzed, an effective algorithmic approach is given. As the initialization value is so critical to the global convergence, the c...In this paper, the subspace fitting models for direction-of-arrival (DOA) estimation is analyzed, an effective algorithmic approach is given. As the initialization value is so critical to the global convergence, the continuation theory is also used to develop a new framework which solves the initialization problem powerfully. Some numerical evidence will be given to show that the performance of the new algorithm is very promising.展开更多
A novel decorrelating DOA estimation algorithm of multipath signals for CDMA frequency selective fading channels based only on the principal eigenvector of its corresponding covariance matrix is proposed. The propose...A novel decorrelating DOA estimation algorithm of multipath signals for CDMA frequency selective fading channels based only on the principal eigenvector of its corresponding covariance matrix is proposed. The proposed algorithm has the advantages that the DOAs of the multipath signals can be estimated independently and all the other resolved multipath signal interference is eliminated. Simulation results show that this algorithm estimates the DOAs of multipath signals efficiently and accurately.展开更多
A joint direction of arrival (DOA) estimation and phase calibration for synchronous CDMA system with decorrelator are presented. Through decorrelating processing DOAs of the desired users can be estimated independentl...A joint direction of arrival (DOA) estimation and phase calibration for synchronous CDMA system with decorrelator are presented. Through decorrelating processing DOAs of the desired users can be estimated independently and all other resolved signal interferences are eliminated. Emphasis is directed to applications in which sensor phases may be in error. It is shown that accurate phase calibration in conjunction with their use in high resolution DOA estimation can be achieved for the decoupled signals.展开更多
多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算...多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算法要求缺失数据随机分布于不完整的矩阵中,无法适用于整行缺失数据的恢复问题。为此,提出了一种基于低秩块Hankel矩阵正则化的阵元故障MIMO雷达DOA估计方法。首先,通过奇异值分解(Singular Value Decomposition,SVD)降低虚拟阵列输出矩阵的维度,以减少计算复杂度。然后,对降维数据矩阵建立基于块Hankel矩阵正则化的低秩矩阵填充模型,在该模型中将MIMO雷达降维数据矩阵排列成块Hankel矩阵并施加Schatten-p范数作为正则项。最后,结合交替方向乘子法(Alternate Direction Multiplier Method,ADMM)求解该模型,获得完整的MIMO雷达降维数据矩阵。仿真结果表明,所提方法能够有效恢复降维数据矩阵中的整行数据缺失,具有较高的DOA估计精度和实时性,在阵元故障率低于50.0%时DOA估计精度优于现有方法。展开更多
Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face ...Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases.展开更多
基金supported in part by the National Science Fund for Excel-lent Young Scholars(No.62222113)in part by the joint Funds of the National Natural Science Foundation of China(No.U22B2015)+1 种基金in part by the stabilization support of National Radar Signal Processing Laboratory(No.KGJ202203)in part by the Fundamental Research Funds for the Central Universities(No.ZDRC2004).
文摘The existing direction-of-arrival(DOA)estimation methods only utilize the current received signals,which are susceptible to noise.In this paper,a method for DOA estimation based on a motion platform is proposed to achieve high-precision DOA estimation by utilizing past and present signals.The concept of synthetic aperture is introduced to construct a linear DOA estima-tion model.A DOA fine-tuning method based on the linear model is proposed to eliminate the lin-ear DOA variation,achieving a non-coherent accumulation of DOA estimations.Moreover,the baseband modulation and the phase modulation caused by the range history are compensated to achieve the coherent accumulation of all the DOA estimations.Simulation results show that the proposed method can significantly improve the DOA estimated accuracy at low signal-to-noise ratios(SNR).
基金supported in part by the National Natural Science Foundation of China(62201447)the Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China(2022JQ-640)。
文摘Despite some efforts and attempts have been made to improve the direction-of-arrival(DOA)estimation performance of the standard Capon beamformer(SCB)in array processing,rigorous statistical performance analyses of these modified Capon estimators are still lacking.This paper studies an improved Capon estimator(ICE)for estimating the DOAs of multiple uncorrelated narrowband signals,where the higherorder inverse(sample)array covariance matrix is used in the Capon-like cost function.By establishing the relationship between this nonparametric estimator and the parametric and classic subspace-based MUSIC(multiple signal classification),it is clarified that as long as the power order of the inverse covariance matrix is increased to reduce the influence of signal subspace components in the ICE,the estimation performance of the ICE becomes equivalent to that of the MUSIC regardless of the signal-to-noise ratio(SNR).Furthermore the statistical performance of the ICE is analyzed,and the large-sample mean-squared-error(MSE)expression of the estimated DOA is derived.Finally the effectiveness and the theoretical analysis of the ICE are substantiated through numerical examples,where the Cramer-Rao lower bound(CRB)is used to evaluate the validity of the derived asymptotic MSE expression.
基金This work was supported in part by the Key R&D Program of Shandong Province,China(No.2020CXGC010109)in part by the Beijing Municipal Science and Technology Project(Z181100003218015).
文摘Generally,due to the limitation of the dimension of the array aperture,linear arrays cannot achieve two-dimensional(2D)direction of arrival(DOA)estimation.But the emergence of array motion provides a chance for that.In this paper,a generalized motion scheme and a novel method of 2D DOA estimation are proposed by exploring the linear array motion.To be specific,the linear arrays are controlled to move along an arbitrary direction at a constant velocity and snap per fixed time delay.All the received signals are processed to synthesize the comprehensive observation vector for an extended 2D virtual aperture.Subsequently,since most of 2D DOA estimation methods are not universal to our proposed motion scheme and the reduced-dimensional(RD)method fails to handle the case of the coupled parameters,a decoupled reduced-complexity multiple signals classification(DRC MUSIC)algorithm is designed specifically.Simulation results demonstrate that:a)our proposed scheme can achieve underdetermined 2D DOA estimation just by the linear arrays;b)our designed DRC MUSIC algorithm has the good properties of high accuracy and low complexity;c)our proposed motion scheme with the DRC method has better universality in the motion direction.
文摘This paper proposes low-cost yet high-accuracy direction of arrival(DOA)estimation for the automotive frequency-modulated continuous-wave(FMcW)radar.The existing subspace-based DOA estimation algorithms suffer fromeither high computational costs or low accuracy.We aim to solve such contradictory relation between complexity and accuracy by using randomizedmatrix approximation.Specifically,we apply an easily-interpretablerandomized low-rank approximation to the covariance matrix(CM)and R∈C^(M×M)throughthresketch maties in the fom of R≈OBQ^(H).Here the approximately compute its subspaces.That is,we first approximate matrix Q∈C^(M×z)contains the orthonormal basis for the range of the sketchmatrik C∈C^(M×z)cwe whichis etrated fom R using randomized unifom counsampling and B∈C^(z×z)is a weight-matrix reducing the approximation error.Relying on such approximation,we are able to accelerate the subspacecomputation by the orders of the magnitude without compromising estimation accuracy.Furthermore,we drive a theoretical error bound for the suggested scheme to ensure the accuracy of the approximation.As validated by the simulation results,the DOA estimation accuracy of the proposed algorithm,eficient multiple signal classification(E-MUSIC)s high,closely tracks standardMUSIC,and outperforms the well-known algorithms with tremendouslyreduced time complexity.Thus,the devised method can realize high-resolutionreal-time target detection in the emerging multiple input and multiple output(MIMO)automotive radar systems.
基金supported by the National Natural Science Foundation of China(617020986170209961331019)
文摘A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm inherits all merits of its spectralsearching counterpart except for the applicability to arbitrary array geometry, while reducing considerably the computation cost.Simulation results show that the proposed algorithm outperforms the previously developed closed-form second-order noncircular ESPRIT method, in terms of processing capacity and DOA estimation accuracy, especially in the presence of spatially colored noise.
文摘A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two-dimensional vector reconstruction (TSR) method. The key idea is to apply the D3 approach which can extract the signal of given frequency but null out other frequency signals in temporal domain. Then the spatial vector reconstruction processing is used to estimate the angle of the spatial coherent signal source based on extract signal data. Compared with the common temporal and spatial processing approach, the TSR method has a lower computational load, higher real-time performance, robustness and angular accuracy of DOA. The proposed algorithm can be directly applied to the phased array radar of coherent pulses. Simulation results demonstrate the performance of the proposed technique.
基金Supported by the Innovation Foundation for Outstanding Postgraduates in the Electronic Engineering Institute of PLA (No. 2009YB005)
文摘A novel Direction-Of-Arrival (DOA) estimation method is proposed in the presence of mutual coupling using the joint sparse recovery. In the proposed method, the eigenvector corresponding to the maximum eigenvalue of covariance matrix of array measurement is viewed as the signal to be represented. By exploiting the geometrical property in steering vectors and the symmetric Toeplitz structure of Mutual Coupling Matrix (MCM), the redundant dictionaries containing the DOA information are constructed. Consequently, the optimization model based on joint sparse recovery is built and then is solved through Second Order Cone Program (SOCP) and Interior Point Method (IPM). The DOA estimates are gotten according to the positions of nonzeros elements. At last, computer simulations demonstrate the excellent performance of the proposed method.
基金Project(2010ZX03006-004) supported by the National Science and Technology Major Program of ChinaProject(YYYJ-1113) supported by the Knowledge Innovation Program of the Chinese Academy of SciencesProject(2011CB302901) supported by the National Basic Research Program of China
文摘The Khatri-Rao(KR) subspace method is a high resolution method for direction-of-arrival(DOA) estimation.Combined with 2q level nested array,the KR subspace method can detect O(N2q) sources with N sensors.However,the method cannot be applicable to Gaussian sources when q is equal to or greater than 2 since it needs to use 2q-th order cumulants.In this work,a novel approach is presented to conduct DOA estimation by constructing a fourth order difference co-array.Unlike the existing DOA estimation method based on the KR product and 2q level nested array,the proposed method only uses second order statistics,so it can be employed to Gaussian sources as well as non-Gaussian sources.By exploiting a four-level nested array with N elements,our method can also identify O(N4) sources.In order to estimate the wideband signals,the proposed method is extended to the wideband scenarios.Simulation results demonstrate that,compared to the state of the art KR subspace based methods,the new method achieves higher resolution.
基金the National Natural Sci-ence Foundation of China(No.62101340).
文摘The performance of traditional high-resolution direction-of-arrival(DOA)estimation methods is sensitive to the inaccurate knowledge on prior information,including the position of ar-ray elements,array gain and phase,and the mutual coupling between the array elements.Learning-based methods are data-driven and are expected to perform better than their model-based counter-parts,since they are insensitive to the array imperfections.This paper presents a learning-based method for DOA estimation of multiple wideband far-field sources.The processing procedure mainly includes two steps.First,a beamspace preprocessing structure which has the property of fre-quency invariant is applied to the array outputs to perform focusing over a wide bandwidth.In the second step,a hierarchical deep neural network is employed to achieve classification.Different from neural networks which are trained through a huge data set containing different angle combinations,our deep neural network can achieve DOA estimation of multiple sources with a small data set,since the classifiers can be trained in different small subregions.Simulation results demonstrate that the proposed method performs well both in generalization and imperfections adaptation.
文摘A new direction-of-arrival (DOA) estimation algorithm for wideband sources is introduced, The new method obtains the output of the virtual arrays in the signal bandwidth using cubic spline function interpolation techniques. The narrowband high- resolution algorithm is then used to get the DOA estimation. This technique does not require any preliminary knowledge of DOA angles. Simulation results demonstrate the effectiveness of the method.
文摘In this paper, the subspace fitting models for direction-of-arrival (DOA) estimation is analyzed, an effective algorithmic approach is given. As the initialization value is so critical to the global convergence, the continuation theory is also used to develop a new framework which solves the initialization problem powerfully. Some numerical evidence will be given to show that the performance of the new algorithm is very promising.
文摘A novel decorrelating DOA estimation algorithm of multipath signals for CDMA frequency selective fading channels based only on the principal eigenvector of its corresponding covariance matrix is proposed. The proposed algorithm has the advantages that the DOAs of the multipath signals can be estimated independently and all the other resolved multipath signal interference is eliminated. Simulation results show that this algorithm estimates the DOAs of multipath signals efficiently and accurately.
文摘A joint direction of arrival (DOA) estimation and phase calibration for synchronous CDMA system with decorrelator are presented. Through decorrelating processing DOAs of the desired users can be estimated independently and all other resolved signal interferences are eliminated. Emphasis is directed to applications in which sensor phases may be in error. It is shown that accurate phase calibration in conjunction with their use in high resolution DOA estimation can be achieved for the decoupled signals.
文摘多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算法要求缺失数据随机分布于不完整的矩阵中,无法适用于整行缺失数据的恢复问题。为此,提出了一种基于低秩块Hankel矩阵正则化的阵元故障MIMO雷达DOA估计方法。首先,通过奇异值分解(Singular Value Decomposition,SVD)降低虚拟阵列输出矩阵的维度,以减少计算复杂度。然后,对降维数据矩阵建立基于块Hankel矩阵正则化的低秩矩阵填充模型,在该模型中将MIMO雷达降维数据矩阵排列成块Hankel矩阵并施加Schatten-p范数作为正则项。最后,结合交替方向乘子法(Alternate Direction Multiplier Method,ADMM)求解该模型,获得完整的MIMO雷达降维数据矩阵。仿真结果表明,所提方法能够有效恢复降维数据矩阵中的整行数据缺失,具有较高的DOA估计精度和实时性,在阵元故障率低于50.0%时DOA估计精度优于现有方法。
基金supported by the Program for Innovative Research Groups of the Hunan Provincial Natural Science Foundation of China(2019JJ10004)。
文摘Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases.