The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the prot...The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the protective benefits of High Density Polyethylene(HDPE)board sand fences,focusing on their orientation relative to various wind directions(referred to as'wind angle').This study found that the size of the low-velocity zone on the leeward side of the sand fences(LSF)expanded with an increase in the wind angle(WA).At 1H(the height of the sand fence)and 2H positions on the LSF,the wind speed profiles(WSP)exhibited a segmented logarithmic growth,constrained by Z=H at varying WAs.The efficacy of the sand fence in obstructing airflow escalated as WA increased.The size of the WA has a significant impact on the protective efficiency of HDPE board sand fences.Furthermore,compared to typical sandy surfaces,the rate of sand transport across the Gobi surface diminishes more slowly with height,attributed to the gravel's rebound effect.This phenomenon allows some sand particles to bypass the fences,rendering them less effective at blocking wind and trapping sand than in sandy environments.This paper offers scientific evidence supporting the practical use and enhancement of HDPE board sand fences in varied wind conditions.展开更多
The Milan Gobi area of the Golmud-Korla Railway in northwest China is located in the lower dispersal area of the mountain pass and has strong winds with evident double wind direction characteristics.This study introdu...The Milan Gobi area of the Golmud-Korla Railway in northwest China is located in the lower dispersal area of the mountain pass and has strong winds with evident double wind direction characteristics.This study introduced a novel sand fence deployment technique,termed‘folded linear deployment',designed to position the sand fence orthogonally to the two predominant wind directions for optimal protection.This study used wind tunnel and field tests to evaluate the wind and sand flow characteristics,as well as the windproof and sandresistant performance of folded linear HDPE(Highdensity polyethylene)board sand fences.The results suggest that the airflow around the fence creates clear zoning characteristics.The deceleration area on the BSF(backwind side of the sand fence)is much larger than that on the DSF(downwind side of the sand fence).Thus,sand particles are primarily deposited on the BSF.At different wind speeds,the airflow at 2 and 5 h on the DSF is not disturbed.The WSP(wind speed profile)presents a logarithmic distribution.The airflow is disturbed at 1-20 h on the BSF,and the WSP gradually deviates from the logarithmic law.However,as the airflow moves away from the fence,the WSP gradually approaches a logarithmic distribution.Meanwhile,the WPE(windproof efficiency)and SRE(sand-resistant efficiency)of the sand fence exceed 80%.In addition,the results of wind tunnel tests are compared with those of field tests.The overall dispersion is good,and the best dispersion is found at z/H=2.00,indicating good agreement between the two test results.This study provides a scientific basis for the design of sand hazard control measures,similar to the railway project in the Gobi Gale area.展开更多
Seed dispersal is a fundamental process affecting destinies of seeds and seedlings, as well as regeneration dynamics and distribution patterns of communities. Recently however, declining Populus euphratica forests hav...Seed dispersal is a fundamental process affecting destinies of seeds and seedlings, as well as regeneration dynamics and distribution patterns of communities. Recently however, declining Populus euphratica forests have failed to regenerate by seeding, while the spatial pattern and utility of their seed rains are unclear. In this study, we designed a model to simulate seed rains based on field investigations by fitting our observations to a normal distribution and testing the model with data from three years, with ac- ceptable results. We examined the simulated results of dispersed seeds patterns on the classification of three factors, i.e., density of Sophora alopecuroides, surface soil moisture and surface soil salinity. The results of seed rain simulation show that over 70% of seeds were dispersed and confined to each of the three plots where their mother trees located. The proportion of 3:7 seeds dispersed inside and outside each plots remained largely unaltered. The differences in the amounts of dispersed seed among the different levels of each of the factors were not significant, although the distributing pattern of P. euphratica in each plot varied. Therefore, in P. eu- phratica communities, the amount of seed does not become a constraint in subsequent germination, although the surface environment does. We conclude that successful P. euphratica seed regeneration relies on less than 30% of seeds dispersed over longer distance to colonize favorable growth habitats.展开更多
In most areas of China, affected by the environment of low temperature and high humidity, the wind speed sensor and wind direction sensor are frozen and cannot output data in autumn, winter or the alternation of winte...In most areas of China, affected by the environment of low temperature and high humidity, the wind speed sensor and wind direction sensor are frozen and cannot output data in autumn, winter or the alternation of winter and spring. In order to solve the freezing situation of the wind sensor, this paper designs a new type of antifreeze wind speed sensor. After meteorology performance testing and field observation tests, the correlation coefficient of the observation data is demonstrated, and the data curve is fitted. The result shows the sensor is stable, and has a good antifreeze effect, the data output is reliable.展开更多
Biogeographical barriers to gene flow are central to plant phylogeography.In East Asia,plant distribution is greatly influenced by two phylogeographic breaks,the Mekong-Salween Divide and Tanaka-Kaiyong Line,however,f...Biogeographical barriers to gene flow are central to plant phylogeography.In East Asia,plant distribution is greatly influenced by two phylogeographic breaks,the Mekong-Salween Divide and Tanaka-Kaiyong Line,however,few studies have investigated how these barriers affect the genetic diversity of species that are distributed across both.Here we used 14 microsatellite loci and four chloroplast DNA fragments to examine genetic diversity and distribution patterns of 49 populations of Populus rotundifolia,a species that spans both the Mekong-Salween Divide and the Tanaka-Kaiyong Line in southwestern China.Demographic and migration hypotheses were tested using coalescent-based approaches.Limited historical gene flow was observed between the western and eastern groups of P.rotundifolia,but substantial flow occurred across both the Mekong-Salween Divide and Tanaka-Kaiyong Line,manifesting in clear admixture and high genetic diversity in the central group.Wind-borne pollen and seeds may have facilitated the dispersal of P.rotundifolia following prevalent northwest winds in the spring.We also found that the Hengduan Mountains,where multiple genetic barriers were detected,acted on the whole as a barrier between the western and eastern groups of P.rotundifolia.Ecological niche modeling suggested that P.rotundifolia has undergone range expansion since the last glacial maximum,and demographic reconstruction indicated an earlier population expansion around 600 Ka.The phylogeographic pattern of P.rotundifolia reflects the interplay of biological traits,wind patterns,barriers,niche differentiation,and Quaternary climate history.This study emphasizes the need for multiple lines of evidence in understanding the Quaternary evolution of plants in topographically complex areas.展开更多
In this study, to investigate whether the variation of wind direction in the upper tropospheric monsoon over the central and eastern tropical Pacific shows similar characteristics to the classical monsoon region, the ...In this study, to investigate whether the variation of wind direction in the upper tropospheric monsoon over the central and eastern tropical Pacific shows similar characteristics to the classical monsoon region, the authors introduced a wind vector angle methodology that describes the size of the angle of the wind direction variation, as well as the directed rotary angle, which includes not only the size of the angle but also how the wind vector rotates. On this basis, the authors utilized and improved the directed rotary angle methodology to investigate the evolution of wind direction in detail, and the study confirmed the presence of the same four rotation features in the upper tropospheric monsoon region. Furthermore, the authors also identified the precise variation of wind direction in pentads with seasonal evolution, and found the onset time of the upper tropospheric monsoon may be earlier than the classical monsoon while the termination time may be later. The results further support and supplement the theory of global monsoons, which unifies the low-level and upper tropospheric monsoon as one monsoon system.展开更多
Three-month wind profiles, 260 m PM_1 concentrations [i.e., particulate matter(PM) with an aerodynamic diameter ≤1μm], and carrier-to-noise ratio data at two Beijing sites 55 km apart(urban and suburban) were collec...Three-month wind profiles, 260 m PM_1 concentrations [i.e., particulate matter(PM) with an aerodynamic diameter ≤1μm], and carrier-to-noise ratio data at two Beijing sites 55 km apart(urban and suburban) were collected to analyze the characteristics of low-level nocturnal wind and PM in autumn and winter. Three mountain-plain wind events with wind shear were selected for analysis. The measurements indicated that the maximum wind speeds of the northerly weak low-level jet(LLJ) below 320 m at the suburban site were weaker than those at the urban site, and the LLJ heights and depths at the suburban site were lower than those at the urban site. The nocturnal 140 m mean vertical velocities and the variations in vertical velocity at the urban site were larger than those at the suburban site. A nocturnal breeze with a weak LLJ of ~3 m s^(-1) noticeably offset nocturnal PM transport due to southerly flow and convergence within the northern urban area of Beijing. Characteristics of the nocturnal LLJ, such as start-up time, structure, intensity, and duration, were important factors in determining the decrease in the nocturnal horizontal range and site-based low-level variations in PM.展开更多
[Objective] The paper was to discuss why the top of tall barchan dunes and barchan chains widespread in single prevailing wind area had not been leveled by wind erosion. [Method] Based on the preliminary survey of dis...[Objective] The paper was to discuss why the top of tall barchan dunes and barchan chains widespread in single prevailing wind area had not been leveled by wind erosion. [Method] Based on the preliminary survey of distribution status,the morphological characteristics and environmental conditions of barchan dunes and barchan chains in Hexi desert area of Gansu were investigated in details. The significance of difference between samples and significance of correlation between indicators were examined via variance test. [Result] Barchan dunes and barchan chains in Hexi desert area of Gansu distributed at the leeward direction of desert fringe,generally in patch distribution. The distribution area was gravelly beach or cohesive gravel beach,with broader dune slack; winds in distribution area of barchan dunes and barchan chains blew obviously from one direction,while winds at other directions were light or occasionally strong but with low frequency;the barchan dune in the desert fringe of Hexi desert area of Gansu was relatively tall,while barchan chain was even more taller and larger. Coincidence or separation of the dune peak and the sand ridge might be related to distribution frequency of dominant prevailing wind or wind at opposite direction and the observation seasons.[Conclusion]Studying top stability of barchan dune has an important academic value in revealing blowing sand movement rule at desert fringe,invasion of sand flow,and expansion of desert.展开更多
As a common and extensive datum to analyze wind,wind rose is one of the most important components of the meteorological elements.In this study,a model is proposed to establish the joint probability distribution of win...As a common and extensive datum to analyze wind,wind rose is one of the most important components of the meteorological elements.In this study,a model is proposed to establish the joint probability distribution of wind speed and direction using grouped data of wind rose.On the basis of the model,an algorithm is presented to generate pseudorandom numbers of wind speed and paired direction data.Afterward,the proposed model and algorithm are applied to two weather stations located in the Liaodong Gulf.With the models built for the two cases,a novel graph representing the continuous joint probability distribution of wind speed and direction is plotted,showing a strong correlation to the corresponding wind rose.Moreover,the joint probability distributions are utilized to evaluate wind energy potential successfully.In cooperation with Monte Carlo simulation,the model can approximately predict annual directional extreme wind speed under different return periods under the condition that the wind rose can represent the meteorological characters of the wind field well.The model is beneficial to design and install wind turbines.展开更多
Daily meteorological data are the critical inputs for distributed hydrological and ecological models. This study modified mountain microclimate simulation model (MTCLIM) with the data from 19 weather stations, and c...Daily meteorological data are the critical inputs for distributed hydrological and ecological models. This study modified mountain microclimate simulation model (MTCLIM) with the data from 19 weather stations, and compared and validated two methods (the MTCLIM and the modified MTCLIM) in the Qilian Mountains of Northwest China to estimate daily temperature (i.e., maximum temperature, minimum temperature) and precipitation at six weather stations from i January 2000 to 31December 2009. The algorithm of temperature in modified MTCLIM was improved by constructing the daily linear regression relationship between temperature and elevation, aspect and location information. There are two steps to modify the MTCLIM to predict daily precipitation: firstly, the linear regression relationship was built between annual average precipitation and elevation, location, and vegetation index; secondly, the distance weight for measuring the contribution of each weather station on target point was improved by average wind direction during the rainy season. Several regression analysis and goodness-of-fit indices (i.e., Pearson's correlation coefficient, coefficient of determination, mean absolute error, root-mean-square error and modelingefficiency) were used to validate these estimated values. The result showed that the modified MTCLIM had a better performance than the MTCLIM. Therefore, the modified MTCLIM was used to map daily meteorological data in the study area from 2000 to 2009. These results were validated using weather stations with short time data and the predicted accuracy was acceptable. The meteorological data mapped could become inputs for distributed hydrological and ecological models applied in the Qilian Mountains.展开更多
A model on the directional frequency spectrum of wind waves for deep water is introduced. The comparisons of the proposed model with other existing models show that the proposed model is very close to the JONSWAP mode...A model on the directional frequency spectrum of wind waves for deep water is introduced. The comparisons of the proposed model with other existing models show that the proposed model is very close to the JONSWAP model and DHH model for describing the developing waves under the normal spectral bandwidth, and has a better description for the transition of the unidirectional spectrum from ω -4 to ω -5 at a position around 3ω p, i.e., three time the peak frequency. Comparisons also show that the proposed model describes closely both field data measured by a four-frequency radar and a laser-optical sensor, and laboratory data measured by a laser slope gauge and an imaging optical method. The comparisons further demonstrate that the inverse spectral bandwidth as a new wave parameter is robust for describing the spectral steepness. Finally, the formula on the local spectral-peak angular frequency is confirmed using the observed two-dimensional spectra.展开更多
By using the historical data during 1953-2009,the yearly most wind direction change in Yumen and the meteorological disasters of 4 times yearly most wind direction abnormality in recent 57 years were analyzed. The res...By using the historical data during 1953-2009,the yearly most wind direction change in Yumen and the meteorological disasters of 4 times yearly most wind direction abnormality in recent 57 years were analyzed. The results showed that there were 51 years which the yearly most wind direction was the easterlies in Yumen,and the westerly had 4 years. There were 2 years which the occurrence frequencies of westerly and easterlies were same. 4 years which the yearly wind direction abnormality was the most were in 1961,1979,1987 and 1998. When the yearly wind direction abnormality was the most,the meteorological disaster was serious. The total output of grain in Gansu Province in 1961 was the least in the history in recent 60 years. The serious drought disaster in 1961 caused that half agricultural population in Gansu seriously lacked of the grain,and the dead population sharply increased. In the end of 1961,the population in Gansu decreased nearly million than in 1958. The annual precipitation in 1979 was the most in recent 57 years. The daily precipitation on June 11,1987 was the most in June of recent 57 years in Yumen. The annual average temperature in 1998 was the highest in Yumen in recent 57 years.展开更多
This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positiv...This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positive and negative synchronous reference frames is presented. Variations of the stator output active and reactive powers are fully deduced in the presence of negative sequence supply voltage and rotor flux. An enhanced DPC scheme is proposed to eliminate stator active power oscillation during network unbalance. The proposed control scheme removes rotor current regulators and the decomposition processing of positive and negative sequence rotor currents. Simulation results using PSCAD/EMTDC are presented on a 2-MW DFIG wind power generation system to validate the feasibility of the proposed control scheme under balanced and unbalanced network conditions.展开更多
Sand hazards are serious at the Danghe Reservoir of Dunhuang,and efforts to control sand are ineffective because disaster-causing mechanisms are currently unclear.The source of sandy materials,dynamic environment of b...Sand hazards are serious at the Danghe Reservoir of Dunhuang,and efforts to control sand are ineffective because disaster-causing mechanisms are currently unclear.The source of sandy materials,dynamic environment of blown sand,and controlling measures of the reservoir area are investigated using different methods,such as granularity analyses,wind regime and sand transport field observation and analyses,sand drift potential calculation.Accordingly,the sandy materials are found to derive chiefly from the Mingsha Mountain on the north side of the reservoir area.In addition,sand grain in the range of 0.50-0.25 mm and 0.25-0.10 mm are dominant.The prevailing sand-moving wind originates from the N direction,accounting for 15.38% of the yearly total,which coincides in the same direction with sand source,thereby increasing the severity of sand hazards in the reservoir area.The yearly sand DP is 1386.59 VU,the yearly RDP is 567.31 VU,the yearly RDP/DP is 0.41,and the yearly RDD is 183.15°.In the windy season(mainly in summer),sand materials are blown by wind from north to south,and then blocked by the Danghe River.The sand materials then move with an approximate east-west trend into the river channel and produce sediment,thereby causing adisaster.We propose that the sand-controlling pattern of the Danghe Reservoir is dominated by sand blocking in the outer fringe and sand fixing in the inner fringe.Applying windbreak and sand fixation to control sandy material movement into the river channel plays an important role in retarding sedimentation and extending the useful life of the Danghe Reservoir.展开更多
Directly buried metal optical cable is a form of erecting optical fiber ring network communication system in wind farms. Although the directly buried optical cable is much less than the overhead optical cable affected...Directly buried metal optical cable is a form of erecting optical fiber ring network communication system in wind farms. Although the directly buried optical cable is much less than the overhead optical cable affected by lightning, sometimes lightning damaging optical cable and flashover discharge accidents of optical cable port occurred. In this paper, the amplitude spectrum of lightning wave, the breakdown depth and breakdown distance of lightning wave to soil, the metal components of optical cable port and the impedance characteristics of grounding wire are systematically analyzed, and the prevention methods of directly buried optical cable in wind farm to avoid lightning damage are proposed.展开更多
A directional function for frequencies equal to and larger than the peak frequency of a wind-wave frequency spectrum is constructed by fitting the angular spreading based on the analytically derived directional spectr...A directional function for frequencies equal to and larger than the peak frequency of a wind-wave frequency spectrum is constructed by fitting the angular spreading based on the analytically derived directional spectrum of Wen et al. (1993, Journal of Oceanography, 49(2), 131~147, 149~172). For frequencies smaller than the peak frequency, the directional function is obtained by comparing and analyzing existing formulas. The nondimensional wind-wave frequency spectrum of Wen et al. (1994, Progress in Natural Seience, 4(4). 407~427;4 (5), 586~596) has been used together with the directional function just mentioned to obtain the directional spectrum for easier application.展开更多
In order to enable a wind tunnel support to have a high enough natural frequency to prevent experiencing mechanical resonance and excessive vibration displacement, five kinds of wind tunnel support structures have bee...In order to enable a wind tunnel support to have a high enough natural frequency to prevent experiencing mechanical resonance and excessive vibration displacement, five kinds of wind tunnel support structures have been simulated and analyzed individually under five different load conditions by means of a nonlinear finite element numerical method. With natural frequency and three directions vibration displacement given, simulation and analyses indicated that additional supports is more beneficial than heightening the rigidity of steel reinforced concrete in support pillars and adopting steel wrappers on the pillars to increase natural frequency of support structure. Increasing the rigidity of steel reinforced concrete, adopting steel wrappers and providing additional supports are all helpful in reducing three directions vibration Max displacement. and additional supports are comparatively more effective. Therefore, a structure scheme with steel reinforced concrete support pillars, steel wrappers and additional supports should be adopted in practical wind tunnel support construction.展开更多
The local scour around a new pile-group foundation of offshore wind turbine subjected to a bi-directional current was physically modeled with a bi-directional flow flume. In a series of experiments, the flow velocity ...The local scour around a new pile-group foundation of offshore wind turbine subjected to a bi-directional current was physically modeled with a bi-directional flow flume. In a series of experiments, the flow velocity and topography of the seabed were measured based on a system composed of plane positioning equipment and an ADV.Experimental results indicate that the development of the scour hole was fast at the beginning, but then the scour rate decreased until reaching equilibrium. Erosion would occur around each pile of the foundation. In most cases, the scour pits were connected in pairs and the outside widths of the scour holes were larger than the inner widths. The maximum scour depth occurred at the side pile of the foundation for each test. In addition, a preliminary investigation shows that the larger the flow velocity, the larger the scour hole dimensions but the shorter equilibrium time. The field maximum scour depth around the foundation was obtained based on the physical experiments with the geometric length scales of 1:27.0, 1:42.5 and 1:68.0, and it agrees with the scour depth estimated by the HEC-18 equation.展开更多
基金financially supported by the National Natural Science Foundation of China (42461011, 42071014)the Fellowship of the China Postdoctoral Science Foundation (2021M703466)
文摘The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the protective benefits of High Density Polyethylene(HDPE)board sand fences,focusing on their orientation relative to various wind directions(referred to as'wind angle').This study found that the size of the low-velocity zone on the leeward side of the sand fences(LSF)expanded with an increase in the wind angle(WA).At 1H(the height of the sand fence)and 2H positions on the LSF,the wind speed profiles(WSP)exhibited a segmented logarithmic growth,constrained by Z=H at varying WAs.The efficacy of the sand fence in obstructing airflow escalated as WA increased.The size of the WA has a significant impact on the protective efficiency of HDPE board sand fences.Furthermore,compared to typical sandy surfaces,the rate of sand transport across the Gobi surface diminishes more slowly with height,attributed to the gravel's rebound effect.This phenomenon allows some sand particles to bypass the fences,rendering them less effective at blocking wind and trapping sand than in sandy environments.This paper offers scientific evidence supporting the practical use and enhancement of HDPE board sand fences in varied wind conditions.
基金financially supported by the Chang Jiang Scholar and Innovation Team Development Plan of China(IRT_15R29)the Basic Research Innovation Group Project of Gansu Province,China(21JR7RA347)the Natural Science Foundation of Gansu Province,China(20JR10RA231)。
文摘The Milan Gobi area of the Golmud-Korla Railway in northwest China is located in the lower dispersal area of the mountain pass and has strong winds with evident double wind direction characteristics.This study introduced a novel sand fence deployment technique,termed‘folded linear deployment',designed to position the sand fence orthogonally to the two predominant wind directions for optimal protection.This study used wind tunnel and field tests to evaluate the wind and sand flow characteristics,as well as the windproof and sandresistant performance of folded linear HDPE(Highdensity polyethylene)board sand fences.The results suggest that the airflow around the fence creates clear zoning characteristics.The deceleration area on the BSF(backwind side of the sand fence)is much larger than that on the DSF(downwind side of the sand fence).Thus,sand particles are primarily deposited on the BSF.At different wind speeds,the airflow at 2 and 5 h on the DSF is not disturbed.The WSP(wind speed profile)presents a logarithmic distribution.The airflow is disturbed at 1-20 h on the BSF,and the WSP gradually deviates from the logarithmic law.However,as the airflow moves away from the fence,the WSP gradually approaches a logarithmic distribution.Meanwhile,the WPE(windproof efficiency)and SRE(sand-resistant efficiency)of the sand fence exceed 80%.In addition,the results of wind tunnel tests are compared with those of field tests.The overall dispersion is good,and the best dispersion is found at z/H=2.00,indicating good agreement between the two test results.This study provides a scientific basis for the design of sand hazard control measures,similar to the railway project in the Gobi Gale area.
基金supported by the National Natural Science Foundation of China(No.30570332,31070553)the 11th Five-Year Plan of the National Scientific and Technological Support Projects(2008BADB0B05)
文摘Seed dispersal is a fundamental process affecting destinies of seeds and seedlings, as well as regeneration dynamics and distribution patterns of communities. Recently however, declining Populus euphratica forests have failed to regenerate by seeding, while the spatial pattern and utility of their seed rains are unclear. In this study, we designed a model to simulate seed rains based on field investigations by fitting our observations to a normal distribution and testing the model with data from three years, with ac- ceptable results. We examined the simulated results of dispersed seeds patterns on the classification of three factors, i.e., density of Sophora alopecuroides, surface soil moisture and surface soil salinity. The results of seed rain simulation show that over 70% of seeds were dispersed and confined to each of the three plots where their mother trees located. The proportion of 3:7 seeds dispersed inside and outside each plots remained largely unaltered. The differences in the amounts of dispersed seed among the different levels of each of the factors were not significant, although the distributing pattern of P. euphratica in each plot varied. Therefore, in P. eu- phratica communities, the amount of seed does not become a constraint in subsequent germination, although the surface environment does. We conclude that successful P. euphratica seed regeneration relies on less than 30% of seeds dispersed over longer distance to colonize favorable growth habitats.
文摘In most areas of China, affected by the environment of low temperature and high humidity, the wind speed sensor and wind direction sensor are frozen and cannot output data in autumn, winter or the alternation of winter and spring. In order to solve the freezing situation of the wind sensor, this paper designs a new type of antifreeze wind speed sensor. After meteorology performance testing and field observation tests, the correlation coefficient of the observation data is demonstrated, and the data curve is fitted. The result shows the sensor is stable, and has a good antifreeze effect, the data output is reliable.
基金funded by the National Natural Science Foundation of China(grants 41571054 and 31622015)the National Basic Research Program of China(grant 2014CB954100)+1 种基金Sichuan University(Fundamental Research Funds for the Central Universities,SCU2021D006 and SCU2022D003Institutional Research Funds,2021SCUNL102).
文摘Biogeographical barriers to gene flow are central to plant phylogeography.In East Asia,plant distribution is greatly influenced by two phylogeographic breaks,the Mekong-Salween Divide and Tanaka-Kaiyong Line,however,few studies have investigated how these barriers affect the genetic diversity of species that are distributed across both.Here we used 14 microsatellite loci and four chloroplast DNA fragments to examine genetic diversity and distribution patterns of 49 populations of Populus rotundifolia,a species that spans both the Mekong-Salween Divide and the Tanaka-Kaiyong Line in southwestern China.Demographic and migration hypotheses were tested using coalescent-based approaches.Limited historical gene flow was observed between the western and eastern groups of P.rotundifolia,but substantial flow occurred across both the Mekong-Salween Divide and Tanaka-Kaiyong Line,manifesting in clear admixture and high genetic diversity in the central group.Wind-borne pollen and seeds may have facilitated the dispersal of P.rotundifolia following prevalent northwest winds in the spring.We also found that the Hengduan Mountains,where multiple genetic barriers were detected,acted on the whole as a barrier between the western and eastern groups of P.rotundifolia.Ecological niche modeling suggested that P.rotundifolia has undergone range expansion since the last glacial maximum,and demographic reconstruction indicated an earlier population expansion around 600 Ka.The phylogeographic pattern of P.rotundifolia reflects the interplay of biological traits,wind patterns,barriers,niche differentiation,and Quaternary climate history.This study emphasizes the need for multiple lines of evidence in understanding the Quaternary evolution of plants in topographically complex areas.
基金supported by the National Natural Science Foundation of China Projects(41530424)SOA Program on Global Change and Air-Sea Interactions(GASI-IPOVAI-03)
文摘In this study, to investigate whether the variation of wind direction in the upper tropospheric monsoon over the central and eastern tropical Pacific shows similar characteristics to the classical monsoon region, the authors introduced a wind vector angle methodology that describes the size of the angle of the wind direction variation, as well as the directed rotary angle, which includes not only the size of the angle but also how the wind vector rotates. On this basis, the authors utilized and improved the directed rotary angle methodology to investigate the evolution of wind direction in detail, and the study confirmed the presence of the same four rotation features in the upper tropospheric monsoon region. Furthermore, the authors also identified the precise variation of wind direction in pentads with seasonal evolution, and found the onset time of the upper tropospheric monsoon may be earlier than the classical monsoon while the termination time may be later. The results further support and supplement the theory of global monsoons, which unifies the low-level and upper tropospheric monsoon as one monsoon system.
基金supported by the National Key R&D Program of China (Grant No.2017YFC0209801)the National Natural Science Foundation of China (Grant Nos.41505091,91544221,41675137,41575124 and 41505116)
文摘Three-month wind profiles, 260 m PM_1 concentrations [i.e., particulate matter(PM) with an aerodynamic diameter ≤1μm], and carrier-to-noise ratio data at two Beijing sites 55 km apart(urban and suburban) were collected to analyze the characteristics of low-level nocturnal wind and PM in autumn and winter. Three mountain-plain wind events with wind shear were selected for analysis. The measurements indicated that the maximum wind speeds of the northerly weak low-level jet(LLJ) below 320 m at the suburban site were weaker than those at the urban site, and the LLJ heights and depths at the suburban site were lower than those at the urban site. The nocturnal 140 m mean vertical velocities and the variations in vertical velocity at the urban site were larger than those at the suburban site. A nocturnal breeze with a weak LLJ of ~3 m s^(-1) noticeably offset nocturnal PM transport due to southerly flow and convergence within the northern urban area of Beijing. Characteristics of the nocturnal LLJ, such as start-up time, structure, intensity, and duration, were important factors in determining the decrease in the nocturnal horizontal range and site-based low-level variations in PM.
基金Supported by Special Project for Preceding Study of 973 Program"Stability Research of Tall Barchan Dune at Oasis Fringe(2014CB460611)National Natural Science Foundation of China"Climatic and Environmental Factors for Formation of Sand Sediment Zone and Its Ecological Effects at Minqin Oasis Fringe of Gansu Province(41261102)
文摘[Objective] The paper was to discuss why the top of tall barchan dunes and barchan chains widespread in single prevailing wind area had not been leveled by wind erosion. [Method] Based on the preliminary survey of distribution status,the morphological characteristics and environmental conditions of barchan dunes and barchan chains in Hexi desert area of Gansu were investigated in details. The significance of difference between samples and significance of correlation between indicators were examined via variance test. [Result] Barchan dunes and barchan chains in Hexi desert area of Gansu distributed at the leeward direction of desert fringe,generally in patch distribution. The distribution area was gravelly beach or cohesive gravel beach,with broader dune slack; winds in distribution area of barchan dunes and barchan chains blew obviously from one direction,while winds at other directions were light or occasionally strong but with low frequency;the barchan dune in the desert fringe of Hexi desert area of Gansu was relatively tall,while barchan chain was even more taller and larger. Coincidence or separation of the dune peak and the sand ridge might be related to distribution frequency of dominant prevailing wind or wind at opposite direction and the observation seasons.[Conclusion]Studying top stability of barchan dune has an important academic value in revealing blowing sand movement rule at desert fringe,invasion of sand flow,and expansion of desert.
基金The study was supported by the National Key Research and Development Program of China(No.2016YFC0303401)the National Natural Science Foundation of China(No.51779236)the National Natural Science Foundation of China-Shandong Joint Fund(No.U1706226).
文摘As a common and extensive datum to analyze wind,wind rose is one of the most important components of the meteorological elements.In this study,a model is proposed to establish the joint probability distribution of wind speed and direction using grouped data of wind rose.On the basis of the model,an algorithm is presented to generate pseudorandom numbers of wind speed and paired direction data.Afterward,the proposed model and algorithm are applied to two weather stations located in the Liaodong Gulf.With the models built for the two cases,a novel graph representing the continuous joint probability distribution of wind speed and direction is plotted,showing a strong correlation to the corresponding wind rose.Moreover,the joint probability distributions are utilized to evaluate wind energy potential successfully.In cooperation with Monte Carlo simulation,the model can approximately predict annual directional extreme wind speed under different return periods under the condition that the wind rose can represent the meteorological characters of the wind field well.The model is beneficial to design and install wind turbines.
基金supported by National Natural Science Foundation of China (Grant Nos.91025015,51178209)
文摘Daily meteorological data are the critical inputs for distributed hydrological and ecological models. This study modified mountain microclimate simulation model (MTCLIM) with the data from 19 weather stations, and compared and validated two methods (the MTCLIM and the modified MTCLIM) in the Qilian Mountains of Northwest China to estimate daily temperature (i.e., maximum temperature, minimum temperature) and precipitation at six weather stations from i January 2000 to 31December 2009. The algorithm of temperature in modified MTCLIM was improved by constructing the daily linear regression relationship between temperature and elevation, aspect and location information. There are two steps to modify the MTCLIM to predict daily precipitation: firstly, the linear regression relationship was built between annual average precipitation and elevation, location, and vegetation index; secondly, the distance weight for measuring the contribution of each weather station on target point was improved by average wind direction during the rainy season. Several regression analysis and goodness-of-fit indices (i.e., Pearson's correlation coefficient, coefficient of determination, mean absolute error, root-mean-square error and modelingefficiency) were used to validate these estimated values. The result showed that the modified MTCLIM had a better performance than the MTCLIM. Therefore, the modified MTCLIM was used to map daily meteorological data in the study area from 2000 to 2009. These results were validated using weather stations with short time data and the predicted accuracy was acceptable. The meteorological data mapped could become inputs for distributed hydrological and ecological models applied in the Qilian Mountains.
基金supported by the National High-Technology Development Project of China through Grant No.863-2001633030 and No.863-2001633080supported partially by the National Aeronautics and Space Administration(NASA)through Grant NAG5-12745+1 种基金by the Office of Naval Research(ONR)through Grant N00014-03-1-0337by the National Oceanic and Atmospheric Administration(NOAA)through Grant NA17EC2449.
文摘A model on the directional frequency spectrum of wind waves for deep water is introduced. The comparisons of the proposed model with other existing models show that the proposed model is very close to the JONSWAP model and DHH model for describing the developing waves under the normal spectral bandwidth, and has a better description for the transition of the unidirectional spectrum from ω -4 to ω -5 at a position around 3ω p, i.e., three time the peak frequency. Comparisons also show that the proposed model describes closely both field data measured by a four-frequency radar and a laser-optical sensor, and laboratory data measured by a laser slope gauge and an imaging optical method. The comparisons further demonstrate that the inverse spectral bandwidth as a new wave parameter is robust for describing the spectral steepness. Finally, the formula on the local spectral-peak angular frequency is confirmed using the observed two-dimensional spectra.
文摘By using the historical data during 1953-2009,the yearly most wind direction change in Yumen and the meteorological disasters of 4 times yearly most wind direction abnormality in recent 57 years were analyzed. The results showed that there were 51 years which the yearly most wind direction was the easterlies in Yumen,and the westerly had 4 years. There were 2 years which the occurrence frequencies of westerly and easterlies were same. 4 years which the yearly wind direction abnormality was the most were in 1961,1979,1987 and 1998. When the yearly wind direction abnormality was the most,the meteorological disaster was serious. The total output of grain in Gansu Province in 1961 was the least in the history in recent 60 years. The serious drought disaster in 1961 caused that half agricultural population in Gansu seriously lacked of the grain,and the dead population sharply increased. In the end of 1961,the population in Gansu decreased nearly million than in 1958. The annual precipitation in 1979 was the most in recent 57 years. The daily precipitation on June 11,1987 was the most in June of recent 57 years in Yumen. The annual average temperature in 1998 was the highest in Yumen in recent 57 years.
基金Project (No. 50577056) supported by the National Natural Science Foundation of China
文摘This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positive and negative synchronous reference frames is presented. Variations of the stator output active and reactive powers are fully deduced in the presence of negative sequence supply voltage and rotor flux. An enhanced DPC scheme is proposed to eliminate stator active power oscillation during network unbalance. The proposed control scheme removes rotor current regulators and the decomposition processing of positive and negative sequence rotor currents. Simulation results using PSCAD/EMTDC are presented on a 2-MW DFIG wind power generation system to validate the feasibility of the proposed control scheme under balanced and unbalanced network conditions.
基金funded by the National Natural Science Foundation of China (Grant No.41401611)one of Special Fund for Forest Scientific Research in the Public Welfare (201504401)+1 种基金the China Postdoctoral Science Foundation (Grant Nos.2014M560817 and 2015T81069)the science and technology program of Gansu Province (Grant No.145RJZA118)
文摘Sand hazards are serious at the Danghe Reservoir of Dunhuang,and efforts to control sand are ineffective because disaster-causing mechanisms are currently unclear.The source of sandy materials,dynamic environment of blown sand,and controlling measures of the reservoir area are investigated using different methods,such as granularity analyses,wind regime and sand transport field observation and analyses,sand drift potential calculation.Accordingly,the sandy materials are found to derive chiefly from the Mingsha Mountain on the north side of the reservoir area.In addition,sand grain in the range of 0.50-0.25 mm and 0.25-0.10 mm are dominant.The prevailing sand-moving wind originates from the N direction,accounting for 15.38% of the yearly total,which coincides in the same direction with sand source,thereby increasing the severity of sand hazards in the reservoir area.The yearly sand DP is 1386.59 VU,the yearly RDP is 567.31 VU,the yearly RDP/DP is 0.41,and the yearly RDD is 183.15°.In the windy season(mainly in summer),sand materials are blown by wind from north to south,and then blocked by the Danghe River.The sand materials then move with an approximate east-west trend into the river channel and produce sediment,thereby causing adisaster.We propose that the sand-controlling pattern of the Danghe Reservoir is dominated by sand blocking in the outer fringe and sand fixing in the inner fringe.Applying windbreak and sand fixation to control sandy material movement into the river channel plays an important role in retarding sedimentation and extending the useful life of the Danghe Reservoir.
基金Supported by Regional Lightning Protection Engineering Technology Research and Development Project in Guangdong Yuedian Dianbai Wind Farm (GDW-PK-21022 Phase II)。
文摘Directly buried metal optical cable is a form of erecting optical fiber ring network communication system in wind farms. Although the directly buried optical cable is much less than the overhead optical cable affected by lightning, sometimes lightning damaging optical cable and flashover discharge accidents of optical cable port occurred. In this paper, the amplitude spectrum of lightning wave, the breakdown depth and breakdown distance of lightning wave to soil, the metal components of optical cable port and the impedance characteristics of grounding wire are systematically analyzed, and the prevention methods of directly buried optical cable in wind farm to avoid lightning damage are proposed.
文摘A directional function for frequencies equal to and larger than the peak frequency of a wind-wave frequency spectrum is constructed by fitting the angular spreading based on the analytically derived directional spectrum of Wen et al. (1993, Journal of Oceanography, 49(2), 131~147, 149~172). For frequencies smaller than the peak frequency, the directional function is obtained by comparing and analyzing existing formulas. The nondimensional wind-wave frequency spectrum of Wen et al. (1994, Progress in Natural Seience, 4(4). 407~427;4 (5), 586~596) has been used together with the directional function just mentioned to obtain the directional spectrum for easier application.
文摘In order to enable a wind tunnel support to have a high enough natural frequency to prevent experiencing mechanical resonance and excessive vibration displacement, five kinds of wind tunnel support structures have been simulated and analyzed individually under five different load conditions by means of a nonlinear finite element numerical method. With natural frequency and three directions vibration displacement given, simulation and analyses indicated that additional supports is more beneficial than heightening the rigidity of steel reinforced concrete in support pillars and adopting steel wrappers on the pillars to increase natural frequency of support structure. Increasing the rigidity of steel reinforced concrete, adopting steel wrappers and providing additional supports are all helpful in reducing three directions vibration Max displacement. and additional supports are comparatively more effective. Therefore, a structure scheme with steel reinforced concrete support pillars, steel wrappers and additional supports should be adopted in practical wind tunnel support construction.
基金financially supported by the National Key Research and Development Program of China(Grant No.2017YFC1404200)the Tianjin Key Program of Applied Foundation and Advanced-Tech Research,China(Grant No.18JCZDJC40200)+1 种基金the National High Technology Research and Development Program of China(863 Program,Grant No.2012AA051709)the National Natural Science Foundation of China(Grant No.51509183)
文摘The local scour around a new pile-group foundation of offshore wind turbine subjected to a bi-directional current was physically modeled with a bi-directional flow flume. In a series of experiments, the flow velocity and topography of the seabed were measured based on a system composed of plane positioning equipment and an ADV.Experimental results indicate that the development of the scour hole was fast at the beginning, but then the scour rate decreased until reaching equilibrium. Erosion would occur around each pile of the foundation. In most cases, the scour pits were connected in pairs and the outside widths of the scour holes were larger than the inner widths. The maximum scour depth occurred at the side pile of the foundation for each test. In addition, a preliminary investigation shows that the larger the flow velocity, the larger the scour hole dimensions but the shorter equilibrium time. The field maximum scour depth around the foundation was obtained based on the physical experiments with the geometric length scales of 1:27.0, 1:42.5 and 1:68.0, and it agrees with the scour depth estimated by the HEC-18 equation.