This article investigates the convergence and growth of multiple Dirichlet series. The Valiron formula of Dirichlet series is extended to n-tuple Dirichlet series and an equivalence relation between the order of n-tup...This article investigates the convergence and growth of multiple Dirichlet series. The Valiron formula of Dirichlet series is extended to n-tuple Dirichlet series and an equivalence relation between the order of n-tuple Dirichlet series and its coefficients and exponents is obtained.展开更多
Under the conditions(without independence): (i) There Exists alpha > 0, such that sup E\Z(n)\(alpha) < +infinity, (ii) There Exists beta > 0, such that sup E\Z(n)\(-beta) < +infinity, the random series Sig...Under the conditions(without independence): (i) There Exists alpha > 0, such that sup E\Z(n)\(alpha) < +infinity, (ii) There Exists beta > 0, such that sup E\Z(n)\(-beta) < +infinity, the random series Sigma a(n) Z(n)e(-lambda n) and series' Sigma a(n)e(-lambda ns) a.s. have the same abscissa of convergence, the (R) order, lower order and type.展开更多
In this paper, the property of infinite order Dirichlet series in the half-plane are investigated. The more exact growth of infinite order Dirichlet series is obtained without using logarithm argument to the type-func...In this paper, the property of infinite order Dirichlet series in the half-plane are investigated. The more exact growth of infinite order Dirichlet series is obtained without using logarithm argument to the type-function for the first time.展开更多
This note deals with the growth of entire Dirichlet series of order zero and the coefficient characteristic of the type under a kind of weaker exponent condition, and improves some known results. Moreover, the regular...This note deals with the growth of entire Dirichlet series of order zero and the coefficient characteristic of the type under a kind of weaker exponent condition, and improves some known results. Moreover, the regular growth of the series is considered under the same exponent condition, and a sufficient condition of the regular growth is given.展开更多
In the paper, generalized orders and generalized types of Dirichlet series in the right half-plane are given. Some interesting relationships on maximum modulus, the maximum term and the coefficients of entire function...In the paper, generalized orders and generalized types of Dirichlet series in the right half-plane are given. Some interesting relationships on maximum modulus, the maximum term and the coefficients of entire function defined by Dirichlet series of in the right half-plane are obtained.展开更多
For a given Dirichlet series absolutely convergent and of order (R)p∈(o, +) in the right-halfplan, its terms can be multiplied respectively by the members of a suitable sequence defined ina probability or topological...For a given Dirichlet series absolutely convergent and of order (R)p∈(o, +) in the right-halfplan, its terms can be multiplied respectively by the members of a suitable sequence defined ina probability or topological space such that the series obtained is of order (R)ρ on any one ofcountably infinite horizontal haif lines almost or quasi surely.展开更多
This note implies only a moment condition upon the coefficients of random Dirichlet series to study the convergence and growth of the series. The condition needs the coefficients to satisfy the so-called inverse H?lde...This note implies only a moment condition upon the coefficients of random Dirichlet series to study the convergence and growth of the series. The condition needs the coefficients to satisfy the so-called inverse H?lder inequality, which need not be independent. The note uses a method whose feature is to compare the convergence of two series, and obtains two theorems, one dealing with the convergence of the random Dirichlet series, another the growth of the random analytic function represented by the series. These results can be used to improve essentially some known conclusions.展开更多
Dirichlet series with real frequencies which represent entire functions on the complex plane C have been investigated by many authors. Several properties such as topological structures, linear continuous functionals, ...Dirichlet series with real frequencies which represent entire functions on the complex plane C have been investigated by many authors. Several properties such as topological structures, linear continuous functionals, and bases have been considered. Le Hai Khoi derived some results with Dirichlet series having negative real frequencies which represent holomorphic functions in a half plane. In the present paper, we have obtained some properties of holomorphic Dirichlet series having positive exponents, whose coefficients belong to a Banach algebra.展开更多
This paper deals with random Taylor series whose coefficients consist of independent random variables {X n} with the property: αE 1/2 {|X n| 2}≤E{|X n|}<∞, E{X n}=0 (n ) for some positive cons...This paper deals with random Taylor series whose coefficients consist of independent random variables {X n} with the property: αE 1/2 {|X n| 2}≤E{|X n|}<∞, E{X n}=0 (n ) for some positive constant α. The convergence, growth, and value distribution of the series are investigated.展开更多
该文研究Dirichlet及随机Dirichlet级数在水平直线或半直线上的增长性,包含关于Taylor级数的相应结果,例如下列简单结果:设Taylor级数F_(z)=sum from n=0 to ∞有收敛半径∞或1,其中0=μ_0<μ_n↑,μ_n∈N,sum from(1/μ_n)<∞....该文研究Dirichlet及随机Dirichlet级数在水平直线或半直线上的增长性,包含关于Taylor级数的相应结果,例如下列简单结果:设Taylor级数F_(z)=sum from n=0 to ∞有收敛半径∞或1,其中0=μ_0<μ_n↑,μ_n∈N,sum from(1/μ_n)<∞.如果这级数有级ρ(在收敛半径是∞或1时,“级”的意义不同),那么在第一种情形。它在从原点出发的每条射线上有级p;在第二种情形,在单位圆盘的每条射线上有级ρ.展开更多
基金Supported by the National Science Foundation of China(10771011)the National Key Basic Research Project of China(2005CB321902)
文摘This article investigates the convergence and growth of multiple Dirichlet series. The Valiron formula of Dirichlet series is extended to n-tuple Dirichlet series and an equivalence relation between the order of n-tuple Dirichlet series and its coefficients and exponents is obtained.
文摘Under the conditions(without independence): (i) There Exists alpha > 0, such that sup E\Z(n)\(alpha) < +infinity, (ii) There Exists beta > 0, such that sup E\Z(n)\(-beta) < +infinity, the random series Sigma a(n) Z(n)e(-lambda n) and series' Sigma a(n)e(-lambda ns) a.s. have the same abscissa of convergence, the (R) order, lower order and type.
基金Research supported by the national natural Science foundation ofChina(19971029)guangdong provincial natural science foundation(990444)
文摘In this paper, the property of infinite order Dirichlet series in the half-plane are investigated. The more exact growth of infinite order Dirichlet series is obtained without using logarithm argument to the type-function for the first time.
文摘This note deals with the growth of entire Dirichlet series of order zero and the coefficient characteristic of the type under a kind of weaker exponent condition, and improves some known results. Moreover, the regular growth of the series is considered under the same exponent condition, and a sufficient condition of the regular growth is given.
基金supported by the National Natural Science Foundation of China(1110109611201083)+1 种基金Guangdong Natural Science Foundation(S2012010010376)the Startup Foundation for Doctors of Guangdong University of Technology(083063)
文摘In the paper, generalized orders and generalized types of Dirichlet series in the right half-plane are given. Some interesting relationships on maximum modulus, the maximum term and the coefficients of entire function defined by Dirichlet series of in the right half-plane are obtained.
文摘For a given Dirichlet series absolutely convergent and of order (R)p∈(o, +) in the right-halfplan, its terms can be multiplied respectively by the members of a suitable sequence defined ina probability or topological space such that the series obtained is of order (R)ρ on any one ofcountably infinite horizontal haif lines almost or quasi surely.
文摘This note implies only a moment condition upon the coefficients of random Dirichlet series to study the convergence and growth of the series. The condition needs the coefficients to satisfy the so-called inverse H?lder inequality, which need not be independent. The note uses a method whose feature is to compare the convergence of two series, and obtains two theorems, one dealing with the convergence of the random Dirichlet series, another the growth of the random analytic function represented by the series. These results can be used to improve essentially some known conclusions.
文摘Dirichlet series with real frequencies which represent entire functions on the complex plane C have been investigated by many authors. Several properties such as topological structures, linear continuous functionals, and bases have been considered. Le Hai Khoi derived some results with Dirichlet series having negative real frequencies which represent holomorphic functions in a half plane. In the present paper, we have obtained some properties of holomorphic Dirichlet series having positive exponents, whose coefficients belong to a Banach algebra.
文摘This paper deals with random Taylor series whose coefficients consist of independent random variables {X n} with the property: αE 1/2 {|X n| 2}≤E{|X n|}<∞, E{X n}=0 (n ) for some positive constant α. The convergence, growth, and value distribution of the series are investigated.
文摘该文研究Dirichlet及随机Dirichlet级数在水平直线或半直线上的增长性,包含关于Taylor级数的相应结果,例如下列简单结果:设Taylor级数F_(z)=sum from n=0 to ∞有收敛半径∞或1,其中0=μ_0<μ_n↑,μ_n∈N,sum from(1/μ_n)<∞.如果这级数有级ρ(在收敛半径是∞或1时,“级”的意义不同),那么在第一种情形。它在从原点出发的每条射线上有级p;在第二种情形,在单位圆盘的每条射线上有级ρ.