Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassem...Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassembly sequence planning problems efficiently, a product disassembly hybrid graph model, which describes the connection, non-connection and precedence relationships between the product parts, is established based on the characteristic of disassembly. Farther, the optimization model is provided to optimize disassembly sequence. And the solution methodology based on the genetic/simulated annealing algorithm with binaxy-tree algorithm is given. Finally, an example is analyzed in detail, and the result shows that the model is correct and efficient.展开更多
Nowadays,energy consumption which closely contacts with environmental impacts of manufacturing processes has been highly commented as a new productivity criterion.However,little attention has paid to the development o...Nowadays,energy consumption which closely contacts with environmental impacts of manufacturing processes has been highly commented as a new productivity criterion.However,little attention has paid to the development of process planning methods that take energy consumption into account.An energy-efficient process planning model that incorporates manufacturing time and energy consumption is proposed.For solving the problem,an improved genetic algorithm method is employed to explore the optimal solution.Finally,a case study for process planning is given.The experimental result generates interesting effort,and therefore allows improving the energy efficiency of manufacturing processes in process planning.展开更多
Production planning under flexible job shop environment is studied.A mathematic model is formulated to help improve alternative process production.This model,in which genetic algorithm is used,is expected to result in...Production planning under flexible job shop environment is studied.A mathematic model is formulated to help improve alternative process production.This model,in which genetic algorithm is used,is expected to result in better production planning,hence towards the aim of minimizing production cost under the constraints of delivery time and other scheduling conditions.By means of this algorithm,all planning schemes which could meet all requirements of the constraints within the whole solution space are exhaustively searched so as to find the optimal one.Also,a case study is given in the end to support and validate this model.Our results show that genetic algorithm is capable of locating feasible process routes to reduce production cost for certain tasks.展开更多
基金supported by the National High Technology Research and Development Program of China(2006AA04Z427).
文摘Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassembly sequence planning problems efficiently, a product disassembly hybrid graph model, which describes the connection, non-connection and precedence relationships between the product parts, is established based on the characteristic of disassembly. Farther, the optimization model is provided to optimize disassembly sequence. And the solution methodology based on the genetic/simulated annealing algorithm with binaxy-tree algorithm is given. Finally, an example is analyzed in detail, and the result shows that the model is correct and efficient.
基金supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme(No.294931)the National Science Foundation of China (No.51175262)+1 种基金Jiangsu Province Science Foundation for Excellent Youths(No.BK2012032)Jiangsu Province Industry-Academy-Research Grant(No.BY201220116)
文摘Nowadays,energy consumption which closely contacts with environmental impacts of manufacturing processes has been highly commented as a new productivity criterion.However,little attention has paid to the development of process planning methods that take energy consumption into account.An energy-efficient process planning model that incorporates manufacturing time and energy consumption is proposed.For solving the problem,an improved genetic algorithm method is employed to explore the optimal solution.Finally,a case study for process planning is given.The experimental result generates interesting effort,and therefore allows improving the energy efficiency of manufacturing processes in process planning.
基金Sponsored by Key Subject Foundation of Beijing Municipal(XK100070530)
文摘Production planning under flexible job shop environment is studied.A mathematic model is formulated to help improve alternative process production.This model,in which genetic algorithm is used,is expected to result in better production planning,hence towards the aim of minimizing production cost under the constraints of delivery time and other scheduling conditions.By means of this algorithm,all planning schemes which could meet all requirements of the constraints within the whole solution space are exhaustively searched so as to find the optimal one.Also,a case study is given in the end to support and validate this model.Our results show that genetic algorithm is capable of locating feasible process routes to reduce production cost for certain tasks.