Preserving biodiversity and maintaining ecological balance is essential in current environmental conditions.It is challenging to determine vegetation using traditional map classification approaches.The primary issue i...Preserving biodiversity and maintaining ecological balance is essential in current environmental conditions.It is challenging to determine vegetation using traditional map classification approaches.The primary issue in detecting vegetation pattern is that it appears with complex spatial structures and similar spectral properties.It is more demandable to determine the multiple spectral ana-lyses for improving the accuracy of vegetation mapping through remotely sensed images.The proposed framework is developed with the idea of ensembling three effective strategies to produce a robust architecture for vegetation mapping.The architecture comprises three approaches,feature-based approach,region-based approach,and texture-based approach for classifying the vegetation area.The novel Deep Meta fusion model(DMFM)is created with a unique fusion frame-work of residual stacking of convolution layers with Unique covariate features(UCF),Intensity features(IF),and Colour features(CF).The overhead issues in GPU utilization during Convolution neural network(CNN)models are reduced here with a lightweight architecture.The system considers detailing feature areas to improve classification accuracy and reduce processing time.The proposed DMFM model achieved 99%accuracy,with a maximum processing time of 130 s.The training,testing,and validation losses are degraded to a significant level that shows the performance quality with the DMFM model.The system acts as a standard analysis platform for dynamic datasets since all three different fea-tures,such as Unique covariate features(UCF),Intensity features(IF),and Colour features(CF),are considered very well.展开更多
Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional meth...Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images.展开更多
This paper introduces some of the image processing techniques developed in the Canada Research Chair in Advanced Geomatics Image Processing Laboratory (CRC-AGIP Lab) and in the Department of Geodesy and Geomatics Engi...This paper introduces some of the image processing techniques developed in the Canada Research Chair in Advanced Geomatics Image Processing Laboratory (CRC-AGIP Lab) and in the Department of Geodesy and Geomatics Engineering (GGE) at the University of New Brunswick (UNB), Canada. The techniques were developed by innovatively/“smartly” utilizing the characteristics of the available very high resolution optical remote sensing images to solve important problems or create new applications in photogrammetry and remote sensing. The techniques to be introduced are: automated image fusion (UNB-PanSharp), satellite image online mapping, street view technology, moving vehicle detection using single set satellite imagery, supervised image segmentation, image matching in smooth areas, and change detection using images from different viewing angles. Because of their broad application potential, some of the techniques have made a global impact, and some have demonstrated the potential for a global impact.展开更多
The two-dimensional Logistic memristive hyperchaotic map(2D-LMHM)and the secure hash SHA-512 are the foundations of the unique remote sensing image encryption algorithm(RS-IEA)suggested in this research.The proposed m...The two-dimensional Logistic memristive hyperchaotic map(2D-LMHM)and the secure hash SHA-512 are the foundations of the unique remote sensing image encryption algorithm(RS-IEA)suggested in this research.The proposed map is formed from the improved Logistic map and the memristor,which has wide phase space and hyperchaotic range and is exceptionally excellent to be utilized in specific applications.The proposed image algorithm uses the permutation-assignment-diffusion structure.Permutation generates two position matrices in a progressive manner to achieve an efficient random exchange of pixel positions,assignment is carried through on the image pixels of the permutated image to entirely remove the original image information,strengthening the relationship between permutation and diffusion,and loop diffusion in two different directions can use subtle changes of pixels to affect the whole plane.The random key and plain-image SHA-512 hash values are used to produce an additional key,which is then utilized to figure out the permutation parameters and the initial value of a chaotic map.The experimental results with the average NPCR=99.6094%(NPCR:number of pixels change rate),average UACI=33.4638%(UACI:unified average changing intensity),100%pass rate of the targets in the test set,the average correlation coefficient is 0.00075,and the local information entropy is 7.9025,which shows that the algorithm is able to defend against a variety of illegal attacks and provide more trustworthy protection than some of the existing state-of-the-art algorithms.展开更多
Aims Mapping vegetation through remotely sensed images involves various considerations,processes and techniques.Increasing availability of remotely sensed images due to the rapid advancement of remote sensing technolo...Aims Mapping vegetation through remotely sensed images involves various considerations,processes and techniques.Increasing availability of remotely sensed images due to the rapid advancement of remote sensing technology expands the horizon of our choices of imagery sources.Various sources of imagery are known for their differences in spectral,spatial,radioactive and temporal characteristics and thus are suitable for different purposes of vegetation mapping.Generally,it needs to develop a vegetation classification at first for classifying and mapping vegetation cover from remote sensed images either at a community level or species level.Then,correlations of the vegetation types(communities or species)within this classification system with discernible spectral characteristics of remote sensed imagery have to be identified.These spectral classes of the imagery are finally translated into the vegetation types in the image interpretation process,which is also called image processing.This paper presents an overview of how to use remote sensing imagery to classify and map vegetation cover.Methods Specifically,this paper focuses on the comparisons of popular remote sensing sensors,commonly adopted image processing methods and prevailing classification accuracy assessments.Important findings The basic concepts,available imagery sources and classification techniques of remote sensing imagery related to vegetation mapping were introduced,analyzed and compared.The advantages and limitations of using remote sensing imagery for vegetation cover mapping were provided to iterate the importance of thorough understanding of the related concepts and careful design of the technical procedures,which can be utilized to study vegetation cover from remote sensed images.展开更多
Remote sensing is an important technical means to investigate land resources.Optical imagery has been widely used in crop classification and can show changes in moisture and chlorophyll content in crop leaves,whereas ...Remote sensing is an important technical means to investigate land resources.Optical imagery has been widely used in crop classification and can show changes in moisture and chlorophyll content in crop leaves,whereas synthetic aperture radar(SAR)imagery is sensitive to changes in growth states and morphological structures.Crop-type mapping with a single type of imagery sometimes has unsatisfactory precision,so providing precise spatiotemporal information on crop type at a local scale for agricultural applications is difficult.To explore the abilities of combining optical and SAR images and to solve the problem of inaccurate spatial information for land parcels,a new method is proposed in this paper to improve crop-type identification accuracy.Multifeatures were derived from the full polarimetric SAR data(GaoFen-3)and a high-resolution optical image(GaoFen-2),and the farmland parcels used as the basic for object-oriented classification were obtained from the GaoFen-2 image using optimal scale segmentation.A novel feature subset selection method based on within-class aggregation and between-class scatter(WA-BS)is proposed to extract the optimal feature subset.Finally,crop-type mapping was produced by a support vector machine(SVM)classifier.The results showed that the proposed method achieved good classification results with an overall accuracy of 89.50%,which is better than the crop classification results derived from SAR-based segmentation.Compared with the ReliefF,mRMR and LeastC feature selection algorithms,the WA-BS algorithm can effectively remove redundant features that are strongly correlated and obtain a high classification accuracy via the obtained optimal feature subset.This study shows that the accuracy of crop-type mapping in an area with multiple cropping patterns can be improved by the combination of optical and SAR remote sensing images.展开更多
This study has tried to prove the ability of remote sensing techniques to extract information necessary for preparation of geological mapping of the earth’s surface using multi-spectral satellite images which are ric...This study has tried to prove the ability of remote sensing techniques to extract information necessary for preparation of geological mapping of the earth’s surface using multi-spectral satellite images which are rich sources of Earth’s surface information. In this study, the surface geological mappings of Zefreh region have been investigated through ASTER, OLI, and IRS-PAN remote sensing data. To prepare the geological map, preprocessing steps and reducing noises from data using MNF algorithm were firstly carried out. Then a set of processing algorithms and image classification methods are included;the band rationing, color composite and pixel classification based on maximum likelihood, spectral and sub-pixel classification methods of spectral angle mapper (SAM), spectral feature fitting (SFF), linear spectral differentiation (LSU), hill-shade images and automatic lineament extraction were used. Confusion matrix was formed for all classified images through control points were randomly selected from 1:25,000 map of the region to determine the accuracy of obtained results, which indicated the maximum accuracy (up to 90%) of output images. Comparing the results obtained from these methods with the map prepared by ground operations confirmed accuracy results. Finally, the surface geology and fault map of Zafreh region was produced by combining detected geological formations and tectonic lineaments.展开更多
The first Ukrainian using experience of multispectral space scanning for digital soil mapping is described in this paper. Methodical approaches for detailed soil observation of Ukrainian forest regions are elaborated ...The first Ukrainian using experience of multispectral space scanning for digital soil mapping is described in this paper. Methodical approaches for detailed soil observation of Ukrainian forest regions are elaborated based on modem mapping principles. For the first time in Ukraine, digital soil maps based on GIS (geographic information system) were obtained for individual farms. In GIS based on space images and digital relief models, the medium-scale and large-scale soil maps were created by geo-statistical methods. According to elaborated methods, modem digital soil mapping should provide all combined works: remote sensing and traditional soil observations. The modem digital soil mapping should be based just on quantitative principles: on remote sensing data, geomorphologic field parameters, and chemical analyses. The methodological approaches, which were used for the first time in Ukraine during digital soil mapping by remote sensing methods, are described in this paper.展开更多
Remote sensing mapping is an important research direction in the development of geographic surveying and mapping.In order to successfully implement the project of Mapping Western China(MWC),a technical mapping system ...Remote sensing mapping is an important research direction in the development of geographic surveying and mapping.In order to successfully implement the project of Mapping Western China(MWC),a technical mapping system has been established.In this project,many problems have been solved through technological innovation,such as block adjustment with scarce control points,large-scale aerial/satellite image mapping,and intelligent interpretation of multi-source images.Several softwares were developed,e.g.PixelGrid for aerial/satellite image mapping in a large area,FeatureStation for the integration of multi-source data in the complex terrain areas,and an airborne multi-band and multi-polarization interferometric data acquisition system for SAR mapping.For the first time,full coverage of 1:50,000 topographic data of China’s land territory has been produced,which means the geospatial framework of digital China is basically completed.With the implementation of other key national plans and projects(i.e.national geographic conditions monitoring and national remote sensing mapping),the focus has changed from MWC to national dynamic mapping.Accordingly,a dynamic mapping system is established.The data acquisition capability has developed from a single source to multiple sources and multiple modalities.The mapping capability has developed into dynamic mapping,and the capability for database update shows the characteristics of collaboration.The national geographic condition monitoring creates a multi-scale index system for statistical analysis for various needs.A multi-level and multi-dimensional technical system for statistical computing and decision-making service is developed for the transformation from dynamic monitoring to information service.In this paper,we give a brief introduction about the recent development of remote sensing mapping in China with respect to data acquisition,map production,and information service.The purpose of this paper is to motivate the establishment of theory and method for remote sensing mapping,technical and equipment in the smart mapping era,to improve the capability of perceiving,analyzing,mining,and applying geographic data,and to promote the intelligent development of geographic surveying and mapping.展开更多
This study was conducted to produce a GIS-based land use/land cover(LULC)balance map for a certain period as a reference for policymakers in planning their future regional development.This study also measures supervis...This study was conducted to produce a GIS-based land use/land cover(LULC)balance map for a certain period as a reference for policymakers in planning their future regional development.This study also measures supervised classification accuracy based on remote sensing and geographic information system(GIS)integration with field conditions.In June 2005 satellite imagery 7 ETM+was used as asset maps to assess land-use changes(LUC).Although in March 2019,the liability maps used satellite imagery 8 OLI/TIRS.Methods analysis consists of pre-image processing,image interpretation,random point,field check,and accuracy assessment.The image processing results were overlaid with an Indonesian topographic map to draw a LULC balance map.The findings indicate that in June 2005 and March 2019,each LULC had an assessment accuracy value of 82%and 86%,with a predicted assessment accuracy value of 18.05%and20.50%,respectively.These findings are checked to determine the suitability performance of field-based imaging approaches based on the Cohen Kappa coefficient criteria of 0.45 and 0.48 for June 2005 and March 2019.Based on these results,the image processing precision and suitability were excellent since they are more than 80%and satisfy the Cohen Kappa performance criterion.Furthermore,geospatial data on the LULC balance map is essential as a guide for planners and decision-makers to plan their regional development.展开更多
文摘Preserving biodiversity and maintaining ecological balance is essential in current environmental conditions.It is challenging to determine vegetation using traditional map classification approaches.The primary issue in detecting vegetation pattern is that it appears with complex spatial structures and similar spectral properties.It is more demandable to determine the multiple spectral ana-lyses for improving the accuracy of vegetation mapping through remotely sensed images.The proposed framework is developed with the idea of ensembling three effective strategies to produce a robust architecture for vegetation mapping.The architecture comprises three approaches,feature-based approach,region-based approach,and texture-based approach for classifying the vegetation area.The novel Deep Meta fusion model(DMFM)is created with a unique fusion frame-work of residual stacking of convolution layers with Unique covariate features(UCF),Intensity features(IF),and Colour features(CF).The overhead issues in GPU utilization during Convolution neural network(CNN)models are reduced here with a lightweight architecture.The system considers detailing feature areas to improve classification accuracy and reduce processing time.The proposed DMFM model achieved 99%accuracy,with a maximum processing time of 130 s.The training,testing,and validation losses are degraded to a significant level that shows the performance quality with the DMFM model.The system acts as a standard analysis platform for dynamic datasets since all three different fea-tures,such as Unique covariate features(UCF),Intensity features(IF),and Colour features(CF),are considered very well.
基金Under the auspices of National Natural Science Foundation of China (No. 40871241, 40771170)National High Technology Research and Development Program of China (No. 2007AA12Z176)
文摘Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images.
文摘This paper introduces some of the image processing techniques developed in the Canada Research Chair in Advanced Geomatics Image Processing Laboratory (CRC-AGIP Lab) and in the Department of Geodesy and Geomatics Engineering (GGE) at the University of New Brunswick (UNB), Canada. The techniques were developed by innovatively/“smartly” utilizing the characteristics of the available very high resolution optical remote sensing images to solve important problems or create new applications in photogrammetry and remote sensing. The techniques to be introduced are: automated image fusion (UNB-PanSharp), satellite image online mapping, street view technology, moving vehicle detection using single set satellite imagery, supervised image segmentation, image matching in smooth areas, and change detection using images from different viewing angles. Because of their broad application potential, some of the techniques have made a global impact, and some have demonstrated the potential for a global impact.
基金supported by the National Natural Science Foundation of China(Grant Nos.62366014 and 61961019)Jiangxi Provincial Natural Science Foundation(Grant No.20232BAB202008)。
文摘The two-dimensional Logistic memristive hyperchaotic map(2D-LMHM)and the secure hash SHA-512 are the foundations of the unique remote sensing image encryption algorithm(RS-IEA)suggested in this research.The proposed map is formed from the improved Logistic map and the memristor,which has wide phase space and hyperchaotic range and is exceptionally excellent to be utilized in specific applications.The proposed image algorithm uses the permutation-assignment-diffusion structure.Permutation generates two position matrices in a progressive manner to achieve an efficient random exchange of pixel positions,assignment is carried through on the image pixels of the permutated image to entirely remove the original image information,strengthening the relationship between permutation and diffusion,and loop diffusion in two different directions can use subtle changes of pixels to affect the whole plane.The random key and plain-image SHA-512 hash values are used to produce an additional key,which is then utilized to figure out the permutation parameters and the initial value of a chaotic map.The experimental results with the average NPCR=99.6094%(NPCR:number of pixels change rate),average UACI=33.4638%(UACI:unified average changing intensity),100%pass rate of the targets in the test set,the average correlation coefficient is 0.00075,and the local information entropy is 7.9025,which shows that the algorithm is able to defend against a variety of illegal attacks and provide more trustworthy protection than some of the existing state-of-the-art algorithms.
文摘Aims Mapping vegetation through remotely sensed images involves various considerations,processes and techniques.Increasing availability of remotely sensed images due to the rapid advancement of remote sensing technology expands the horizon of our choices of imagery sources.Various sources of imagery are known for their differences in spectral,spatial,radioactive and temporal characteristics and thus are suitable for different purposes of vegetation mapping.Generally,it needs to develop a vegetation classification at first for classifying and mapping vegetation cover from remote sensed images either at a community level or species level.Then,correlations of the vegetation types(communities or species)within this classification system with discernible spectral characteristics of remote sensed imagery have to be identified.These spectral classes of the imagery are finally translated into the vegetation types in the image interpretation process,which is also called image processing.This paper presents an overview of how to use remote sensing imagery to classify and map vegetation cover.Methods Specifically,this paper focuses on the comparisons of popular remote sensing sensors,commonly adopted image processing methods and prevailing classification accuracy assessments.Important findings The basic concepts,available imagery sources and classification techniques of remote sensing imagery related to vegetation mapping were introduced,analyzed and compared.The advantages and limitations of using remote sensing imagery for vegetation cover mapping were provided to iterate the importance of thorough understanding of the related concepts and careful design of the technical procedures,which can be utilized to study vegetation cover from remote sensed images.
基金The authors acknowledge that this study was financially supported by the National Key R&D Programs of China(No.2017YFB0504201)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA20020101)+1 种基金and the Natural Science Foundation of China(No.61473286 and No.61375002)Our sincere thanks go to the students at the State Key Laboratory of Remote Sensing Science for their assistance during the field survey campaigns.
文摘Remote sensing is an important technical means to investigate land resources.Optical imagery has been widely used in crop classification and can show changes in moisture and chlorophyll content in crop leaves,whereas synthetic aperture radar(SAR)imagery is sensitive to changes in growth states and morphological structures.Crop-type mapping with a single type of imagery sometimes has unsatisfactory precision,so providing precise spatiotemporal information on crop type at a local scale for agricultural applications is difficult.To explore the abilities of combining optical and SAR images and to solve the problem of inaccurate spatial information for land parcels,a new method is proposed in this paper to improve crop-type identification accuracy.Multifeatures were derived from the full polarimetric SAR data(GaoFen-3)and a high-resolution optical image(GaoFen-2),and the farmland parcels used as the basic for object-oriented classification were obtained from the GaoFen-2 image using optimal scale segmentation.A novel feature subset selection method based on within-class aggregation and between-class scatter(WA-BS)is proposed to extract the optimal feature subset.Finally,crop-type mapping was produced by a support vector machine(SVM)classifier.The results showed that the proposed method achieved good classification results with an overall accuracy of 89.50%,which is better than the crop classification results derived from SAR-based segmentation.Compared with the ReliefF,mRMR and LeastC feature selection algorithms,the WA-BS algorithm can effectively remove redundant features that are strongly correlated and obtain a high classification accuracy via the obtained optimal feature subset.This study shows that the accuracy of crop-type mapping in an area with multiple cropping patterns can be improved by the combination of optical and SAR remote sensing images.
文摘This study has tried to prove the ability of remote sensing techniques to extract information necessary for preparation of geological mapping of the earth’s surface using multi-spectral satellite images which are rich sources of Earth’s surface information. In this study, the surface geological mappings of Zefreh region have been investigated through ASTER, OLI, and IRS-PAN remote sensing data. To prepare the geological map, preprocessing steps and reducing noises from data using MNF algorithm were firstly carried out. Then a set of processing algorithms and image classification methods are included;the band rationing, color composite and pixel classification based on maximum likelihood, spectral and sub-pixel classification methods of spectral angle mapper (SAM), spectral feature fitting (SFF), linear spectral differentiation (LSU), hill-shade images and automatic lineament extraction were used. Confusion matrix was formed for all classified images through control points were randomly selected from 1:25,000 map of the region to determine the accuracy of obtained results, which indicated the maximum accuracy (up to 90%) of output images. Comparing the results obtained from these methods with the map prepared by ground operations confirmed accuracy results. Finally, the surface geology and fault map of Zafreh region was produced by combining detected geological formations and tectonic lineaments.
文摘The first Ukrainian using experience of multispectral space scanning for digital soil mapping is described in this paper. Methodical approaches for detailed soil observation of Ukrainian forest regions are elaborated based on modem mapping principles. For the first time in Ukraine, digital soil maps based on GIS (geographic information system) were obtained for individual farms. In GIS based on space images and digital relief models, the medium-scale and large-scale soil maps were created by geo-statistical methods. According to elaborated methods, modem digital soil mapping should provide all combined works: remote sensing and traditional soil observations. The modem digital soil mapping should be based just on quantitative principles: on remote sensing data, geomorphologic field parameters, and chemical analyses. The methodological approaches, which were used for the first time in Ukraine during digital soil mapping by remote sensing methods, are described in this paper.
基金This work is supported by the National Natural Science Foundation of China[grant numbers 41701506 and 41671440].
文摘Remote sensing mapping is an important research direction in the development of geographic surveying and mapping.In order to successfully implement the project of Mapping Western China(MWC),a technical mapping system has been established.In this project,many problems have been solved through technological innovation,such as block adjustment with scarce control points,large-scale aerial/satellite image mapping,and intelligent interpretation of multi-source images.Several softwares were developed,e.g.PixelGrid for aerial/satellite image mapping in a large area,FeatureStation for the integration of multi-source data in the complex terrain areas,and an airborne multi-band and multi-polarization interferometric data acquisition system for SAR mapping.For the first time,full coverage of 1:50,000 topographic data of China’s land territory has been produced,which means the geospatial framework of digital China is basically completed.With the implementation of other key national plans and projects(i.e.national geographic conditions monitoring and national remote sensing mapping),the focus has changed from MWC to national dynamic mapping.Accordingly,a dynamic mapping system is established.The data acquisition capability has developed from a single source to multiple sources and multiple modalities.The mapping capability has developed into dynamic mapping,and the capability for database update shows the characteristics of collaboration.The national geographic condition monitoring creates a multi-scale index system for statistical analysis for various needs.A multi-level and multi-dimensional technical system for statistical computing and decision-making service is developed for the transformation from dynamic monitoring to information service.In this paper,we give a brief introduction about the recent development of remote sensing mapping in China with respect to data acquisition,map production,and information service.The purpose of this paper is to motivate the establishment of theory and method for remote sensing mapping,technical and equipment in the smart mapping era,to improve the capability of perceiving,analyzing,mining,and applying geographic data,and to promote the intelligent development of geographic surveying and mapping.
文摘This study was conducted to produce a GIS-based land use/land cover(LULC)balance map for a certain period as a reference for policymakers in planning their future regional development.This study also measures supervised classification accuracy based on remote sensing and geographic information system(GIS)integration with field conditions.In June 2005 satellite imagery 7 ETM+was used as asset maps to assess land-use changes(LUC).Although in March 2019,the liability maps used satellite imagery 8 OLI/TIRS.Methods analysis consists of pre-image processing,image interpretation,random point,field check,and accuracy assessment.The image processing results were overlaid with an Indonesian topographic map to draw a LULC balance map.The findings indicate that in June 2005 and March 2019,each LULC had an assessment accuracy value of 82%and 86%,with a predicted assessment accuracy value of 18.05%and20.50%,respectively.These findings are checked to determine the suitability performance of field-based imaging approaches based on the Cohen Kappa coefficient criteria of 0.45 and 0.48 for June 2005 and March 2019.Based on these results,the image processing precision and suitability were excellent since they are more than 80%and satisfy the Cohen Kappa performance criterion.Furthermore,geospatial data on the LULC balance map is essential as a guide for planners and decision-makers to plan their regional development.