期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Numerical Investigation on Downstream Increase in Peak Discharge of Hyperconcentrated Floods in the Lower Yellow River
1
作者 Zhijing Li Zhongwu Jin 《Journal of Applied Mathematics and Physics》 2016年第4期641-647,共7页
Hyperconcentrated floods in the Yellow River usually accompanied with some peculiar phenomena that cannot be explained by general conceptions of ordinary sediment-laden flow (e.g., downstream increase in peak discharg... Hyperconcentrated floods in the Yellow River usually accompanied with some peculiar phenomena that cannot be explained by general conceptions of ordinary sediment-laden flow (e.g., downstream increase in peak discharge, instability flow, ripping up the bottom). Up to date, the mechanisms for the abnormal phenomena are not well understood. The aim of this paper is to facilitate a new insight into the abnormal downstream increase in peak discharge of hyperconcentrated floods in the lower Yellow River. Numerical model experiments have been conducted on a typical flood occurred in August 1992 in the Lower Yellow River during which the peak discharge at Huayuankou station was 1690 m3/s larger than the value at Xiaolangdi station at upstream. It is found that a fully coupled model that incorporates the contribution of bed evolution to the mass conservation of the water-sediment mixture, can reasonably well capture the characteristics of peak discharge rise and severe bed scour, while separate numerical experiment using a decoupled model, which ignores the feedback effects of bed evolution, shows no rise in the peak discharge. This leads us to comment, if only briefly, that the entrainment of sediment due to bed erosion is the main reason for causing peak discharge increase along downstream course. 展开更多
关键词 Hyperconcentrated Flood Abnormal Phenomena peak discharge Increase Sediment Transport Mathematical Model
下载PDF
An improved method that incorporates the estimated runoff for peak discharge prediction on the Chinese Loess Plateau 被引量:1
2
作者 Wenhai Shi Miaomiao Wang +2 位作者 Donghao Li Xianwei Li Mengying Sun 《International Soil and Water Conservation Research》 SCIE CSCD 2023年第2期290-300,共11页
An accurate prediction of peak discharge in watersheds is critical not only for water resource manage-ment,but also for understanding the complex relationships of hydrological processes.In this study,a modified peak d... An accurate prediction of peak discharge in watersheds is critical not only for water resource manage-ment,but also for understanding the complex relationships of hydrological processes.In this study,a modified peak discharge formula based on the Chemicals,Runoff,and Erosion from Agricultural Man-agement Systems(CREAMS)model was developed by introducing rainfall intensity and soil moisture factors.The reliability of the proposed method was tested with data from 1464 storm events in 41 watersheds and was applied to 256 storm events in five remaining typical watersheds using the opti-mized parameters.The results indicate that the proposed method is highly accurate in terms of model efficiency,as determined by Nash-Sutcliffe efficiencies(NSEs)of 88.60%,74.04%,and 90.12%during the calibration,validation,and application cases,respectively.Furthermore,it performed better than the original and modified CREAMS methods.Subsequently,using the parameters derived from the initial 41 watersheds and the runoff estimated using the modified Soil Conservation Service curve number(SCS-CN)method,the proposed method was used to predict the peak discharge from the last five typical watersheds.Large NSE(63.88-80.83%)and low root mean square error(RMSE)values(0.31-35.93 m^(3)s^(-1))were obtained for the five watersheds.Overall,the proposed peak discharge model,combined with the modified SCS-CN method,may accurately predict event-based peak discharge and runoff for general applications under various hydrological and geomorphic conditions in the Loess Plateau region. 展开更多
关键词 Chemicals Runoff and Erosion from agricultural management systems (CREAMS) NRCS-CN peak discharge Surface runoff Rainfall intensity
原文传递
Modeling of breaching parameters for debris flow dams
3
作者 RUAN He-chun CHEN Hua-yong +8 位作者 CHEN Xiao-qing ZHAO Wan-yu CHEN Jian-gang WANG Tao JIANG Yao Wang Xi-an Li Xiang-ning LI Xiao YU Yun-han 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2835-2851,共17页
The debris flow dam is a common type of barrier dams,which shows significant differences from other types of barrier dam such as landslide dam,moraine dam in their formation processes,dam body shapes,and internal comp... The debris flow dam is a common type of barrier dams,which shows significant differences from other types of barrier dam such as landslide dam,moraine dam in their formation processes,dam body shapes,and internal compositions.The basic breaching parameters such as flood peak discharge are vital indicators of risk assessment.In this study,we elucidated the failure process of the debris flow dam through the flume experiment,and built the calculation equation of the breaching parameters by selecting critical factors.The result shows that the overtopping failure process of the debris flow dam is capable of forming significantly retrogressive scarps,and the failure process experiences three stages,the formation of the retrogressive scarp,the erosion of the retrogressive scarp,and the decline of the retrogressive scarp.Five factors used for establishing the calculation equations for peak discharge(Qp),final width(Wb)of the breach,and duration(T)of the debris flow dam failure are dam height(h),reservoir capacity(V),the fine grain content(P0.075)of the soil,the nonuniformity coefficient(Cu)of the soil,and the upper limit grain size(D90)of the soil,respectively.In the three equations,the correlation coefficients between Qp,Wb,T and the five factors were 0.86,0.70,0.63,respectively.The equations still need to be modified and verified in actual cases. 展开更多
关键词 Debris flow dams Overtopping failure Breaching g parameters peak discharge Flume experiment
下载PDF
Effects of Increasing Rainfall Depths and Impervious Areas on the Hydrologic Responses
4
作者 Mosammat Mustari Khanaum Md Saidul Borhan 《Open Journal of Modern Hydrology》 CAS 2023年第2期114-128,共15页
Hydrologic modeling is a popular tool for estimating the hydrological response of a watershed. However, modeling processes are becoming more complex due to land-use changes such as urbanization, industrialization, and... Hydrologic modeling is a popular tool for estimating the hydrological response of a watershed. However, modeling processes are becoming more complex due to land-use changes such as urbanization, industrialization, and the expansion of agricultural activities. The primary goal of the research was to use the HEC-HMS model to evaluate the impact of impervious soil layers and the increase in rainfall-runoff processes on hydrologic processes. For these purposes, the Watershed Modelling System (WMS) and Hydrologic Engineering Center’s-Hydrologic Modeling System (HEC-HMS) models were used in this study to simulate the rainfall-runoff process. To compute runoff rate, runoff volume, base flow, and flow routing methods SCS curve number, SCS unit hydrograph, recession, and loss routing methods were selected for the research, respectively. To reduce the processing time and computational complexity, a small section of the Pipestem Creek Watershed was selected to understand the methods and concepts associated with the hydrologic simulation model building. A DEM along with other required data such as land use land cover data, soil type data, and meteorological data was utilized to delineate the watershed in WMS. The output of WMS was utilized to run the HEC-HMS model for five different scenario analyses. All the relevant data were plugged in to the model to get the desired map. Subsequently, outlets at appropriate locations were selected for the sub-basin delineation for further analysis. Finally, the model was parametrized to get successful simulation results. Overall, peak discharges and runoff volumes were increased with increasing storm depths and impervious areas. Peak discharges were increased to 36% and 51% when rainfall depths were increased by 10% and 20% from the initial rainfall depth, respectively. Runoff volumes were also increased to 35% and 49% for the same scenarios, respectively. Peak discharges were increased to 12% and 78% with a 10% and 20%, respectively, increase in impervious areas. The runoff volumes were increased by 12% and 76% when impervious areas were increased by 10% and 20%, respectively. The simulation models responded well, and the peak discharges and runoff volumes increased with increasing storm depths and impervious areas. 展开更多
关键词 peak discharge RUNOFF Impervious Area HEC-HMS WMS
下载PDF
Zero increase in peak discharge for sustainable development
5
作者 Xing Fang Junqi Li +1 位作者 Yongwei Gong Xiaoning Li 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2017年第4期11-21,共11页
For urban land development, some or all natural land uses (primarily pervious) are converted into impervious areas which lead to increases of runoff volume and peak discharge. Most of the developed countries require... For urban land development, some or all natural land uses (primarily pervious) are converted into impervious areas which lead to increases of runoff volume and peak discharge. Most of the developed countries require a zero increase in peak discharge for any land development, and the policy has been implemented for several decades. The policy of zero increase in peak discharge can be considered as historical and early stage for the low impact development (LID) and sustainable development, which is to maintain natural hydrological conditions by storing a part or all of additional runoff due to the development on site. The paper will discuss the policy, the policy implementation for individual projects and their impact on regional hydrology. The design rainfalls for sizing LID facilities that are determined in 206 weather stations in USA are smaller than design rainfalls for sizing detention basins.The zero-increase policy links to financial responsibility and sustainability for construction of urban stormwater infrastructures and for reducing urban flooding. The policy was compared with current practices of urban development in China to shine the light for solving urban stormwater problems. The connections and differences among LID practices, the zero-increase policy, and the flood control infrastructure were discussed. We promote and advocate the zero-increase policy on peak discharge for comprehensive stormwater management in China in addition to LID. 展开更多
关键词 Stormwater management Detention basin Zero increase peak discharge Sustainable development Design rainfall
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部