A cascade glow discharge in atmospheric helium was excited by a microsecond voltage pulse and a pulse-modulated radio frequency(RF) voltage, in which the discharge ignition dynamics of the RF discharge burst was inves...A cascade glow discharge in atmospheric helium was excited by a microsecond voltage pulse and a pulse-modulated radio frequency(RF) voltage, in which the discharge ignition dynamics of the RF discharge burst was investigated experimentally. The spatio-temporal evolution of the discharge, the ignition time and optical emission intensities of plasma species of the RF discharge burst were investigated under different time intervals between the pulsed voltage and RF voltage in the experiment. The results show that by increasing the time interval between the pulsed discharge and RF discharge burst from 5 μs to 20 μs, the ignition time of the RF discharge burst is increased from 1.6 μs to 2.0 μs, and the discharge spatial profile of RF discharge in the ignition phase changes from a double-hump shape to a bell-shape. The light emission intensity at 706 nm and 777 nm at different time intervals indicates that the RF discharge burst ignition of the depends on the number of residual plasma species generated in the pulsed discharges.展开更多
The electrical and thermal characterization of near-surface electrical discharge plasma driven by radio frequency voltage are investigated experimentally in this paper. The influences of operating pressure, electrode ...The electrical and thermal characterization of near-surface electrical discharge plasma driven by radio frequency voltage are investigated experimentally in this paper. The influences of operating pressure, electrode distance, and duty cycle on the discharge are studied. When pressure reaches 60 Ton. (1 Torr= 1.33322 x 102 Pa) the transition from diffuse glow mode to constricted mode occurs. With the operating pressure varying from 10 Tort to 60 Torr, the discharge energy calculated from the charge-voltage (Q-V) Lissajous figure decreases rapidly, while it remains unchanged between 60 Torr and 460 Torr. Under certain experimental conditions, there exists an optimized electrode distance (8 mm). As the duty cycle of applied voltage increases, the voltage-current waveforms and Q-V Lissajous figures show no distinct changes.展开更多
Thermal and induced flow velocity characteristics of radio frequency(RF) surface dielectric barrier discharge(SDBD)plasma actuation are experimentally investigated in this paper. The spatial and temporal distribut...Thermal and induced flow velocity characteristics of radio frequency(RF) surface dielectric barrier discharge(SDBD)plasma actuation are experimentally investigated in this paper. The spatial and temporal distributions of the dielectric surface temperature are measured with the infrared thermography at atmospheric pressure. In the spanwise direction, the highest dielectric surface temperature is acquired at the center of the high voltage electrode, while it reduces gradually along the chordwise direction. The maximum temperature of the dielectric surface raises rapidly once discharge begins.After several seconds(typically 100 s), the temperature reaches equilibrium among the actuator's surface, plasma, and surrounding air. The maximum dielectric surface temperature is higher than that powered by an AC power supply in dozens of k Hz. Influences of the duty cycle and the input frequency on the thermal characteristics are analyzed. When the duty cycle increases, the maximum dielectric surface temperature increases linearly. However, the maximum dielectric surface temperature increases nonlinearly when the input frequency varies from 0.47 MHz to 1.61 MHz. The induced flow velocity of the RF SDBD actuator is 0.25 m/s.展开更多
In atmospheric radio-frequency (rf) discharges, the plasma parameters, such as electron density, sheath thickness and sheath voltage, are not easy to be probed experimentally, while the electrical characteristics, s...In atmospheric radio-frequency (rf) discharges, the plasma parameters, such as electron density, sheath thickness and sheath voltage, are not easy to be probed experimentally, while the electrical characteristics, such as impedance, resistance and reactance, are relatively convenient to be measured. In this paper we presented a simple theoretical model derived from the fluid description of generated plasmas without considering the circuit model, to investigate the relationship between the plasma impedance and plasma parameters. By introducing a relaxation frequency, the plasma impedance could be predicted by formulas presented in this study, and the mean electron density and sheath thickness can also be calculated from the measured or simulated impedance and reactance, respectively.展开更多
The discharge characteristics of capacitively coupled argon plasmas driven by very high frequency discharge are studied.The mean electron temperature and electron density are calculated by using the Ar spectral lines ...The discharge characteristics of capacitively coupled argon plasmas driven by very high frequency discharge are studied.The mean electron temperature and electron density are calculated by using the Ar spectral lines at different values of power(20 W-70 W)and four different frequencies(13.56 MHz,40.68 MHz,94.92 MHz,and 100 MHz).The mean electron temperature decreases with the increase of power at a fixed frequency.The mean electron temperature varies non-linearly with frequency increasing at constant power.At 40.68 MHz,the mean electron temperature is the largest.The electron density increases with the increase of power at a fixed frequency.In the cases of driving frequencies of 94.92 MHz and 100 MHz,the obtained electron temperatures are almost the same,so are the electron densities.Particle-in-cell/Monte-Carlo collision(PIC/MCC)method developed within the Vsim 8.0 simulation package is used to simulate the electron density,the potential distribution,and the electron energy probability function(EEPF)under the experimental condition.The sheath width increases with the power increasing.The EEPF of 13.56 MHz and 40.68 MHz are both bi-Maxwellian with a large population of low-energy electrons.The EEPF of 94.92 MHz and 100 MHz are almost the same and both are nearly Maxwellian.展开更多
A one-dimensional self-consistent fluid model was developed for radio frequency glow discharge in helium at near atmospheric pressure, and was employed to study the gas breakdown characteristics in terms of breakdown ...A one-dimensional self-consistent fluid model was developed for radio frequency glow discharge in helium at near atmospheric pressure, and was employed to study the gas breakdown characteristics in terms of breakdown voltage. The effective secondary electron emission coefficient and the effective electric field for ions were demonstrated to be important for determining the breakdown voltage of radio frequency glow discharge at near atmospheric pressure. The constant of A was estimated to be 64:t=4 cm-lTorr-1, which was proportional to the first Townsend coefficient and could be employed to evaluate the gas breakdown voltage. The reduction in the breakdown voltage of radio frequency glow discharge with excitation frequency was studied and attributed to the electron trapping effect in the discharge gap.展开更多
This paper presents the fabrication and a spectroscopic study of a stable radio- frequency dielectric barrier discharge (RF DBD) in Ar with a novel dielectric, anodic alumina, at atmospheric pressure. Dielectric ele...This paper presents the fabrication and a spectroscopic study of a stable radio- frequency dielectric barrier discharge (RF DBD) in Ar with a novel dielectric, anodic alumina, at atmospheric pressure. Dielectric electrodes are fabricated from commercially available low cost impure aluminum strips by a two-step anodization process in 0.3 M solution of oxalic acid. The discharge is found to be stable with excellent spatial uniformity for the RF input power range of 30~80 W. Excitation and rotational temperatures measured in the experiment range of 1472~3255 K and 434~484 K, respectively, as the input power changes from 30 W to 80 W. These temperature ranges are suitable for surface modification applications.展开更多
A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on e...A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared.展开更多
Grafting of polystyrene (PS) onto titanium dioxide powder was investigated. The graft polymerization reaction was induced by high frequency discharge produced N2 plasma treatment of the surfaces of titanium dioxide....Grafting of polystyrene (PS) onto titanium dioxide powder was investigated. The graft polymerization reaction was induced by high frequency discharge produced N2 plasma treatment of the surfaces of titanium dioxide. IR, XPS and TGA results show that PS was grafted on the titanium dioxide powder. And the crystal structure of the titanium dioxide powder observed by XRD was unchanged after plasma treatment.展开更多
Electrical characteristics and optical emission spectrum of the radio frequency (RF) surface dielectric barrier discharge (SDBD) plasma actuation are investigated experimentally in this paper. Influences of operat...Electrical characteristics and optical emission spectrum of the radio frequency (RF) surface dielectric barrier discharge (SDBD) plasma actuation are investigated experimentally in this paper. Influences of operating pressure, duty cycle and load power on the discharge are analyzed. When the operating pressure reaches 30 kPa, the discharge energy calculated from the Charge-Voltage (Q-V) Lissajous figure increases significantly, while the effective capacitance decreases remarkably. As the duty cycle of the applied voltage increases, the voltage-current waveforms, the area of Q-V loop and the capacity show no distinct changes. Below 40 W, effective capacitance increases with the increase of load power, but it almost remains . peak peak unchanged when load power is between 40 W and 95 W. The relative intensity Ipeak 91.4/Ipeak380.5 changes little as the operating pressure varies from 4 kPa to 100 kPa, while it rises evidently with the pressure below 4 kPa, which indicates that the RF discharge mode shifts from filamentary discharge to glow discharge at around 4 kPa. With the increase of load power, the Ipeak371.1/Ipeak380.5 relative intensity Ipeak91.4/Ipeak380.5 rises evidently Additionally, the relative intensity Ipeak91.4/Ipeak380.5 is insensitive to the pressure, the duty cycle, and the load power.展开更多
In this paper, we present a theoretical study on the discharge characteristics of radio-frequency discharges at atmospheric pressure driven by a higher frequency of 40.68 MHz while the electrode gap is altered. Based ...In this paper, we present a theoretical study on the discharge characteristics of radio-frequency discharges at atmospheric pressure driven by a higher frequency of 40.68 MHz while the electrode gap is altered. Based on the analytical equations and simulation data from a one-dimensional fluid model, an optimal gap between electrodes, at which the largest electron density is obtained, can be observed under a constant power condition; however, as the electrode gap increases the time-averaged electron temperature decreases, and the underpinning physics is also discussed based on the simulation results. This study indicates that at a constant power by choosing an appropriate electrode spacing, the rf discharge can be effectively optimized at atmospheric pressure.展开更多
This work reports the experimental results on the characteristics of radio frequency dielectric barrier N2/Ar discharges. Depending on the nitrogen content in the feed gas and the input power, the discharge can operat...This work reports the experimental results on the characteristics of radio frequency dielectric barrier N2/Ar discharges. Depending on the nitrogen content in the feed gas and the input power, the discharge can operate in two different modes: a homogeneous glow discharge and a constricted discharge. With increasing input power, the number of discharge columns increases. The discharge columns have starlike structures and exhibit symmetric self-organized arrangement. Optical emission spectroscopy was performed to estimate the plasma temperature. Spatially resolved gas temperature measurements, determined from NO emission rotational spectroscopy were taken across the 4.4 mm gap filled by the discharge. Gas temperature in the middle of the gas gap is lower than that close to the electrodes.展开更多
The technique of glow discharges in radio frequency configuration was applied to ignite hollow cathode vacuum arc discharge. The effect of discharge parameters on the building up of hollow cathode arc discharge was in...The technique of glow discharges in radio frequency configuration was applied to ignite hollow cathode vacuum arc discharge. The effect of discharge parameters on the building up of hollow cathode arc discharge was investigated. The emission spectrum during the vacuum arc ignition process was measured to disclose the discharge dynamics. There exists a threshold radio frequency power (300 W), beyond which hollow cathode is in T mode discharge status while radio frequency discharge changes into the arc discharge. With the increase of the radio frequency power, the plasma temperature and electronic density increase, and the discharge mode transits more rapidly. The ignition time of hollow cathode vacuum arc discharge is less than 4 s with a radio frequency power of 700 W.展开更多
The spatial distributions of the electron density and the mean electron energy of argon radio frequency (rf) glow discharge plasma in a plasma-enhanced chemical vapour deposition (PECVD) system have been investiga...The spatial distributions of the electron density and the mean electron energy of argon radio frequency (rf) glow discharge plasma in a plasma-enhanced chemical vapour deposition (PECVD) system have been investigated using an established movable Langmuir probe. The results indicate that in the axial direction the electron density tends to peak at midway between the two electrodes while the axial variation trend of mean electron energy is different from that of the electron density, the mean electron energy is high near the electrodes. And the mean electron energy near the cathode is much higher than that near the anode. This article focuses on the radial distribution of electron density and mean electron energy. A proposed theoretical model distribution agrees well with the experimental one: the electron density and the mean electron energy both increase from the centre of the glow to the edge of electrodes. This is useful for better understanding the discharge mechanism and searching for a better deposition condition to improve thin film quality.展开更多
A simple method for measuring RF plasma parameters by means of a DC-biased Langmuir probe is developed. The object of this paper is to ensure the reliability of this method by using the other methods with different pr...A simple method for measuring RF plasma parameters by means of a DC-biased Langmuir probe is developed. The object of this paper is to ensure the reliability of this method by using the other methods with different principles. First, Langmuir probe current response on RF voltage superimposed to DC biased probe was examined in DC plasmas. Next, probe current response of DC biased probe in RF plasmas was studied and compared with the first experiment. The results were confirmed by using an emissive prove method, an ion acoustic wave method, and a square pulse response method. The method using a simple Langmuir probe is useful and convenient for measuring electron temperature , electron density , time-averaged space potential , and amplitude of space potential oscillation in RF plasmas with a frequency of the order of .展开更多
Aiming at studying the influence of actuating frequency on plasma assisted detonation initiation by alternating current dielectric barrier discharge, a loosely coupled method is used to simulate the detonation initiat...Aiming at studying the influence of actuating frequency on plasma assisted detonation initiation by alternating current dielectric barrier discharge, a loosely coupled method is used to simulate the detonation initiation process of a hydrogenoxygen mixture in a detonation tube at different actuating frequencies. Both the discharge products and the detonation forming process which is assisted by the plasma are analyzed. It is found that the patterns of the temporal and spatial distributions of discharge products in one cycle are not changed by the actuating frequency. However, the concentration of every species decreases as the actuating frequency rises, and atom O is the most sensitive to this variation, which is related to the decrease of discharge power. With respect to the reaction flow of the detonation tube, the deflagration-todetonation transition(DDT) time and distance both increase as the actuating frequency rises, but the degree of effect on DDT development during flow field evolution is erratic. Generally, the actuating frequency affects none of the amplitude value of the pressure, temperature, species concentration of the flow field, and the combustion degree within the reaction zone.展开更多
An indirect method for measuring the electron density of radio frequency atmospheric pressure plasma jets (RF-APPJ) based on the discharge voltage and current waveforms is presented. An equivalent circuit of the pla...An indirect method for measuring the electron density of radio frequency atmospheric pressure plasma jets (RF-APPJ) based on the discharge voltage and current waveforms is presented. An equivalent circuit of the plasma discharge is assumed by taking into account the electrode capacitance, serial resistance and inductance of the bulk plasma, as well as the sheath impedance. Based on the circuit model, the electron density can be obtained according to Ohm's law. By using this method, the effects of the electrode shape and discharge gap on the electron density are discussed.展开更多
In an almost cubical reactor 90 1 in volume which is intended to deposit organic polymers by plasma-enhanced chemical vapor deposition (PECVD), microwave power is coupled into the volume via a quartz window which ex...In an almost cubical reactor 90 1 in volume which is intended to deposit organic polymers by plasma-enhanced chemical vapor deposition (PECVD), microwave power is coupled into the volume via a quartz window which extends to approximately 1/10 of the sidewall area. Since the plasma is excited locally, plasma parameters like electron temperature and plasma density are expected to exhibit a spatial variation. The compilation of these plasma quantities has been accomplished with a bendable single Langmuir probe. To isolate the tungsten wire against its grounded housing tube, it was coated with polyparylene. After having compared this construction with our Langmuir probe, which has been now in use for more than a decade, we have taken data of more than half the volume of the reactor with argon and have found a definitive radial inhomogenity for all plasma parameters. To investigate whether this conduct can be determined applying optical emission spectroscopy, we improved our spectrometer which had been used for endpoint detection purposes and plasma diagnostics in chlorine-containing ambients where we could detect also a spatial dependence. This behavior is discussed in terms of Lieberman's global model.展开更多
Magnetohydrodynamic (MHD) power generation with supersonic non-equilibrium plasma is demonstrated. Capacitively coupled radio frequency (RF) discharge (6 MHz, maximum continual power output of 200 W) was adopted to io...Magnetohydrodynamic (MHD) power generation with supersonic non-equilibrium plasma is demonstrated. Capacitively coupled radio frequency (RF) discharge (6 MHz, maximum continual power output of 200 W) was adopted to ionize the Mach number 3.5 (650 m/s), 0.023 kg/m(3) airflow. In a MHD channel of 16 mm x 10 mm x 20 mm, MHD open voltage of 10 V is realized in the magnetic field of 1.25 T, and power of 0.12 mW is extracted steadily and continuously in the magnetic field of 1 T. The reasons for limited power generation are proposed as: low conductivity of RF discharge; large touch resistance between MHD electrode and plasma; strong current eddies due to flow boundary layer. In addition, the cathode voltage fall is too low to have obvious effects on MHD power generation. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 11875104 and 12175036)。
文摘A cascade glow discharge in atmospheric helium was excited by a microsecond voltage pulse and a pulse-modulated radio frequency(RF) voltage, in which the discharge ignition dynamics of the RF discharge burst was investigated experimentally. The spatio-temporal evolution of the discharge, the ignition time and optical emission intensities of plasma species of the RF discharge burst were investigated under different time intervals between the pulsed voltage and RF voltage in the experiment. The results show that by increasing the time interval between the pulsed discharge and RF discharge burst from 5 μs to 20 μs, the ignition time of the RF discharge burst is increased from 1.6 μs to 2.0 μs, and the discharge spatial profile of RF discharge in the ignition phase changes from a double-hump shape to a bell-shape. The light emission intensity at 706 nm and 777 nm at different time intervals indicates that the RF discharge burst ignition of the depends on the number of residual plasma species generated in the pulsed discharges.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11472306,51407197,and 51507187)
文摘The electrical and thermal characterization of near-surface electrical discharge plasma driven by radio frequency voltage are investigated experimentally in this paper. The influences of operating pressure, electrode distance, and duty cycle on the discharge are studied. When pressure reaches 60 Ton. (1 Torr= 1.33322 x 102 Pa) the transition from diffuse glow mode to constricted mode occurs. With the operating pressure varying from 10 Tort to 60 Torr, the discharge energy calculated from the charge-voltage (Q-V) Lissajous figure decreases rapidly, while it remains unchanged between 60 Torr and 460 Torr. Under certain experimental conditions, there exists an optimized electrode distance (8 mm). As the duty cycle of applied voltage increases, the voltage-current waveforms and Q-V Lissajous figures show no distinct changes.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472306,51407197,and 51507187)
文摘Thermal and induced flow velocity characteristics of radio frequency(RF) surface dielectric barrier discharge(SDBD)plasma actuation are experimentally investigated in this paper. The spatial and temporal distributions of the dielectric surface temperature are measured with the infrared thermography at atmospheric pressure. In the spanwise direction, the highest dielectric surface temperature is acquired at the center of the high voltage electrode, while it reduces gradually along the chordwise direction. The maximum temperature of the dielectric surface raises rapidly once discharge begins.After several seconds(typically 100 s), the temperature reaches equilibrium among the actuator's surface, plasma, and surrounding air. The maximum dielectric surface temperature is higher than that powered by an AC power supply in dozens of k Hz. Influences of the duty cycle and the input frequency on the thermal characteristics are analyzed. When the duty cycle increases, the maximum dielectric surface temperature increases linearly. However, the maximum dielectric surface temperature increases nonlinearly when the input frequency varies from 0.47 MHz to 1.61 MHz. The induced flow velocity of the RF SDBD actuator is 0.25 m/s.
基金supported by National Natural Science Foundation of China(No.11375107)Independent Innovation Foundation of Shandong University of China(No.2012TS067)
文摘In atmospheric radio-frequency (rf) discharges, the plasma parameters, such as electron density, sheath thickness and sheath voltage, are not easy to be probed experimentally, while the electrical characteristics, such as impedance, resistance and reactance, are relatively convenient to be measured. In this paper we presented a simple theoretical model derived from the fluid description of generated plasmas without considering the circuit model, to investigate the relationship between the plasma impedance and plasma parameters. By introducing a relaxation frequency, the plasma impedance could be predicted by formulas presented in this study, and the mean electron density and sheath thickness can also be calculated from the measured or simulated impedance and reactance, respectively.
基金Project supported by the National Natural Science Foundation of China(Grant No.11665021)the Natural Science Foundation of Gansu Province,China(Grant No.20JR10RA078).
文摘The discharge characteristics of capacitively coupled argon plasmas driven by very high frequency discharge are studied.The mean electron temperature and electron density are calculated by using the Ar spectral lines at different values of power(20 W-70 W)and four different frequencies(13.56 MHz,40.68 MHz,94.92 MHz,and 100 MHz).The mean electron temperature decreases with the increase of power at a fixed frequency.The mean electron temperature varies non-linearly with frequency increasing at constant power.At 40.68 MHz,the mean electron temperature is the largest.The electron density increases with the increase of power at a fixed frequency.In the cases of driving frequencies of 94.92 MHz and 100 MHz,the obtained electron temperatures are almost the same,so are the electron densities.Particle-in-cell/Monte-Carlo collision(PIC/MCC)method developed within the Vsim 8.0 simulation package is used to simulate the electron density,the potential distribution,and the electron energy probability function(EEPF)under the experimental condition.The sheath width increases with the power increasing.The EEPF of 13.56 MHz and 40.68 MHz are both bi-Maxwellian with a large population of low-energy electrons.The EEPF of 94.92 MHz and 100 MHz are almost the same and both are nearly Maxwellian.
基金supported by National Natural Science Foundation of China (Nos. 10835004, 10905010)Shanghai Shuguang Program (No. 08SG31)the Fundamental Research Funds for the Central Universities of China
文摘A one-dimensional self-consistent fluid model was developed for radio frequency glow discharge in helium at near atmospheric pressure, and was employed to study the gas breakdown characteristics in terms of breakdown voltage. The effective secondary electron emission coefficient and the effective electric field for ions were demonstrated to be important for determining the breakdown voltage of radio frequency glow discharge at near atmospheric pressure. The constant of A was estimated to be 64:t=4 cm-lTorr-1, which was proportional to the first Townsend coefficient and could be employed to evaluate the gas breakdown voltage. The reduction in the breakdown voltage of radio frequency glow discharge with excitation frequency was studied and attributed to the electron trapping effect in the discharge gap.
基金supported partially by the Higher Education Commission Project No.794 and Project No.1852 of Pakistan
文摘This paper presents the fabrication and a spectroscopic study of a stable radio- frequency dielectric barrier discharge (RF DBD) in Ar with a novel dielectric, anodic alumina, at atmospheric pressure. Dielectric electrodes are fabricated from commercially available low cost impure aluminum strips by a two-step anodization process in 0.3 M solution of oxalic acid. The discharge is found to be stable with excellent spatial uniformity for the RF input power range of 30~80 W. Excitation and rotational temperatures measured in the experiment range of 1472~3255 K and 434~484 K, respectively, as the input power changes from 30 W to 80 W. These temperature ranges are suitable for surface modification applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.51172101)
文摘A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared.
文摘Grafting of polystyrene (PS) onto titanium dioxide powder was investigated. The graft polymerization reaction was induced by high frequency discharge produced N2 plasma treatment of the surfaces of titanium dioxide. IR, XPS and TGA results show that PS was grafted on the titanium dioxide powder. And the crystal structure of the titanium dioxide powder observed by XRD was unchanged after plasma treatment.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472306,51276197,and 51336011)
文摘Electrical characteristics and optical emission spectrum of the radio frequency (RF) surface dielectric barrier discharge (SDBD) plasma actuation are investigated experimentally in this paper. Influences of operating pressure, duty cycle and load power on the discharge are analyzed. When the operating pressure reaches 30 kPa, the discharge energy calculated from the Charge-Voltage (Q-V) Lissajous figure increases significantly, while the effective capacitance decreases remarkably. As the duty cycle of the applied voltage increases, the voltage-current waveforms, the area of Q-V loop and the capacity show no distinct changes. Below 40 W, effective capacitance increases with the increase of load power, but it almost remains . peak peak unchanged when load power is between 40 W and 95 W. The relative intensity Ipeak 91.4/Ipeak380.5 changes little as the operating pressure varies from 4 kPa to 100 kPa, while it rises evidently with the pressure below 4 kPa, which indicates that the RF discharge mode shifts from filamentary discharge to glow discharge at around 4 kPa. With the increase of load power, the Ipeak371.1/Ipeak380.5 relative intensity Ipeak91.4/Ipeak380.5 rises evidently Additionally, the relative intensity Ipeak91.4/Ipeak380.5 is insensitive to the pressure, the duty cycle, and the load power.
基金supported by National Natural Science Foundation of China(No.11375107)the Fundamental Research Funds of Shandong University of China(No.2012TS067)
文摘In this paper, we present a theoretical study on the discharge characteristics of radio-frequency discharges at atmospheric pressure driven by a higher frequency of 40.68 MHz while the electrode gap is altered. Based on the analytical equations and simulation data from a one-dimensional fluid model, an optimal gap between electrodes, at which the largest electron density is obtained, can be observed under a constant power condition; however, as the electrode gap increases the time-averaged electron temperature decreases, and the underpinning physics is also discussed based on the simulation results. This study indicates that at a constant power by choosing an appropriate electrode spacing, the rf discharge can be effectively optimized at atmospheric pressure.
基金supported by National Natural Science Foundation of China(No.11175024)Scientific Research Common Program of Beijing Municipal Education Commission of China(Nos.KM201110015008,KM201310015006)
文摘This work reports the experimental results on the characteristics of radio frequency dielectric barrier N2/Ar discharges. Depending on the nitrogen content in the feed gas and the input power, the discharge can operate in two different modes: a homogeneous glow discharge and a constricted discharge. With increasing input power, the number of discharge columns increases. The discharge columns have starlike structures and exhibit symmetric self-organized arrangement. Optical emission spectroscopy was performed to estimate the plasma temperature. Spatially resolved gas temperature measurements, determined from NO emission rotational spectroscopy were taken across the 4.4 mm gap filled by the discharge. Gas temperature in the middle of the gas gap is lower than that close to the electrodes.
基金National Natural Science Foundation of China,Youth Foundation of Heilongjiang Institute of Technology (2012QJ13).
文摘The technique of glow discharges in radio frequency configuration was applied to ignite hollow cathode vacuum arc discharge. The effect of discharge parameters on the building up of hollow cathode arc discharge was investigated. The emission spectrum during the vacuum arc ignition process was measured to disclose the discharge dynamics. There exists a threshold radio frequency power (300 W), beyond which hollow cathode is in T mode discharge status while radio frequency discharge changes into the arc discharge. With the increase of the radio frequency power, the plasma temperature and electronic density increase, and the discharge mode transits more rapidly. The ignition time of hollow cathode vacuum arc discharge is less than 4 s with a radio frequency power of 700 W.
文摘The spatial distributions of the electron density and the mean electron energy of argon radio frequency (rf) glow discharge plasma in a plasma-enhanced chemical vapour deposition (PECVD) system have been investigated using an established movable Langmuir probe. The results indicate that in the axial direction the electron density tends to peak at midway between the two electrodes while the axial variation trend of mean electron energy is different from that of the electron density, the mean electron energy is high near the electrodes. And the mean electron energy near the cathode is much higher than that near the anode. This article focuses on the radial distribution of electron density and mean electron energy. A proposed theoretical model distribution agrees well with the experimental one: the electron density and the mean electron energy both increase from the centre of the glow to the edge of electrodes. This is useful for better understanding the discharge mechanism and searching for a better deposition condition to improve thin film quality.
文摘A simple method for measuring RF plasma parameters by means of a DC-biased Langmuir probe is developed. The object of this paper is to ensure the reliability of this method by using the other methods with different principles. First, Langmuir probe current response on RF voltage superimposed to DC biased probe was examined in DC plasmas. Next, probe current response of DC biased probe in RF plasmas was studied and compared with the first experiment. The results were confirmed by using an emissive prove method, an ion acoustic wave method, and a square pulse response method. The method using a simple Langmuir probe is useful and convenient for measuring electron temperature , electron density , time-averaged space potential , and amplitude of space potential oscillation in RF plasmas with a frequency of the order of .
基金Project supported by the Open Project of Science and Technology on Scramjet Laboratory,China(Grant No.CG-2014-05-118)the National Natural Science Foundation of China(Grant No.91441123)
文摘Aiming at studying the influence of actuating frequency on plasma assisted detonation initiation by alternating current dielectric barrier discharge, a loosely coupled method is used to simulate the detonation initiation process of a hydrogenoxygen mixture in a detonation tube at different actuating frequencies. Both the discharge products and the detonation forming process which is assisted by the plasma are analyzed. It is found that the patterns of the temporal and spatial distributions of discharge products in one cycle are not changed by the actuating frequency. However, the concentration of every species decreases as the actuating frequency rises, and atom O is the most sensitive to this variation, which is related to the decrease of discharge power. With respect to the reaction flow of the detonation tube, the deflagration-todetonation transition(DDT) time and distance both increase as the actuating frequency rises, but the degree of effect on DDT development during flow field evolution is erratic. Generally, the actuating frequency affects none of the amplitude value of the pressure, temperature, species concentration of the flow field, and the combustion degree within the reaction zone.
基金supported by National Natural Science Foundation of China(Nos.10775026,50537020,50528707)
文摘An indirect method for measuring the electron density of radio frequency atmospheric pressure plasma jets (RF-APPJ) based on the discharge voltage and current waveforms is presented. An equivalent circuit of the plasma discharge is assumed by taking into account the electrode capacitance, serial resistance and inductance of the bulk plasma, as well as the sheath impedance. Based on the circuit model, the electron density can be obtained according to Ohm's law. By using this method, the effects of the electrode shape and discharge gap on the electron density are discussed.
基金support financially by Germany's Federal Secretary of Education and Research(Nos.1715X04 and 1753X08)
文摘In an almost cubical reactor 90 1 in volume which is intended to deposit organic polymers by plasma-enhanced chemical vapor deposition (PECVD), microwave power is coupled into the volume via a quartz window which extends to approximately 1/10 of the sidewall area. Since the plasma is excited locally, plasma parameters like electron temperature and plasma density are expected to exhibit a spatial variation. The compilation of these plasma quantities has been accomplished with a bendable single Langmuir probe. To isolate the tungsten wire against its grounded housing tube, it was coated with polyparylene. After having compared this construction with our Langmuir probe, which has been now in use for more than a decade, we have taken data of more than half the volume of the reactor with argon and have found a definitive radial inhomogenity for all plasma parameters. To investigate whether this conduct can be determined applying optical emission spectroscopy, we improved our spectrometer which had been used for endpoint detection purposes and plasma diagnostics in chlorine-containing ambients where we could detect also a spatial dependence. This behavior is discussed in terms of Lieberman's global model.
基金co-supported by the National Natural Science Foundation of China (No. 11372352)the Shaanxi Province Science Foundation of China (No. 2013JQ1016)
文摘Magnetohydrodynamic (MHD) power generation with supersonic non-equilibrium plasma is demonstrated. Capacitively coupled radio frequency (RF) discharge (6 MHz, maximum continual power output of 200 W) was adopted to ionize the Mach number 3.5 (650 m/s), 0.023 kg/m(3) airflow. In a MHD channel of 16 mm x 10 mm x 20 mm, MHD open voltage of 10 V is realized in the magnetic field of 1.25 T, and power of 0.12 mW is extracted steadily and continuously in the magnetic field of 1 T. The reasons for limited power generation are proposed as: low conductivity of RF discharge; large touch resistance between MHD electrode and plasma; strong current eddies due to flow boundary layer. In addition, the cathode voltage fall is too low to have obvious effects on MHD power generation. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd.