The drastic growth of coastal observation sensors results in copious data that provide weather information.The intricacies in sensor-generated big data are heterogeneity and interpretation,driving high-end Information...The drastic growth of coastal observation sensors results in copious data that provide weather information.The intricacies in sensor-generated big data are heterogeneity and interpretation,driving high-end Information Retrieval(IR)systems.The Semantic Web(SW)can solve this issue by integrating data into a single platform for information exchange and knowledge retrieval.This paper focuses on exploiting the SWbase systemto provide interoperability through ontologies by combining the data concepts with ontology classes.This paper presents a 4-phase weather data model:data processing,ontology creation,SW processing,and query engine.The developed Oceanographic Weather Ontology helps to enhance data analysis,discovery,IR,and decision making.In addition to that,it also evaluates the developed ontology with other state-of-the-art ontologies.The proposed ontology’s quality has improved by 39.28%in terms of completeness,and structural complexity has decreased by 45.29%,11%and 37.7%in Precision and Accuracy.Indian Meteorological Satellite INSAT-3D’s ocean data is a typical example of testing the proposed model.The experimental result shows the effectiveness of the proposed data model and its advantages in machine understanding and IR.展开更多
Mining the content from an information database provides challenging solutions to the industry experts and researchers, due to the overcrowded information in huge data. In web searching, the information retrieved is n...Mining the content from an information database provides challenging solutions to the industry experts and researchers, due to the overcrowded information in huge data. In web searching, the information retrieved is not an appropriate, because it gives ambiguous information for the user query, and the user cannot get relevant information within the stipulated time. To overcome these issues, we propose a new methodology for information retrieval EPCRR by providing the top most exact information to the user, by using the collaborative clustered automated filter which makes use of the collaborative data set and filter works on the prediction by providing the highest ranking for the exact data retrieved. The retrieval works on the basis of recommendation of data which consists of relevant data set with highest priority from the cluster of data which is on high usage. In this work, we make use of the automated wrapper which works similar to the meta crawler functionality and it obtains the content in the semantic usage data format. Obtained information from the user to the agent will be ranked based on the Enabled Pile clustered data with respect to the metadata information from the agent and end-user. The information is given to the end-user with the top most ranking data within the stipulated time and the remaining top information will be moved to the data repository for future use. The data collected will remain stable based on the user preference and works on the intelligence system approach in which the user can choose any information under any instances and can be provided with suitable high range of exact content. In this approach, we find that the proposed algorithm has produced better results than existing work and it costs less online computation time.展开更多
A method that combines category-based and keyword-based concepts for a better information retrieval system is introduced. To improve document clustering, a document similarity measure based on cosine vector and keywor...A method that combines category-based and keyword-based concepts for a better information retrieval system is introduced. To improve document clustering, a document similarity measure based on cosine vector and keywords frequency in documents is proposed, but also with an input ontology. The ontology is domain specific and includes a list of keywords organized by degree of importance to the categories of the ontology, and by means of semantic knowledge, the ontology can improve the effects of document similarity measure and feedback of information retrieval systems. Two approaches to evaluating the performance of this similarity measure and the comparison with standard cosine vector similarity measure are also described.展开更多
Enhancements in technology always follow Consumer requirements. Consumer requires best of service with least possible mismatch and on time. Numerous applications available today are based on Web Services and Cloud Com...Enhancements in technology always follow Consumer requirements. Consumer requires best of service with least possible mismatch and on time. Numerous applications available today are based on Web Services and Cloud Computing. Recently, there exist many Web Services with similar functional characteristics. Choosing “a-right” Service from group of similar Web Service is a complicated task for Service Consumer. In that case, Service Consumer can discover the required Web Service using non functional attributes of the Web Services such as QoS. Proposed layered architecture and Web Service-Cloud, i.e. WS-Cloud computing Framework synthesizes the non functional attributes that includes reliability, availability, response time, latency etc. The Service Consumer is projected to provide the QoS requirements as part of Service discovery query. This framework will discover and filter the Web Services form the cloud and rank them according to Service Consumer preferences to facilitate Service on time.展开更多
基金This work is financially supported by the Ministry of Earth Science(MoES),Government of India,(Grant.No.MoES/36/OOIS/Extra/45/2015),URL:https://www.moes.gov.in。
文摘The drastic growth of coastal observation sensors results in copious data that provide weather information.The intricacies in sensor-generated big data are heterogeneity and interpretation,driving high-end Information Retrieval(IR)systems.The Semantic Web(SW)can solve this issue by integrating data into a single platform for information exchange and knowledge retrieval.This paper focuses on exploiting the SWbase systemto provide interoperability through ontologies by combining the data concepts with ontology classes.This paper presents a 4-phase weather data model:data processing,ontology creation,SW processing,and query engine.The developed Oceanographic Weather Ontology helps to enhance data analysis,discovery,IR,and decision making.In addition to that,it also evaluates the developed ontology with other state-of-the-art ontologies.The proposed ontology’s quality has improved by 39.28%in terms of completeness,and structural complexity has decreased by 45.29%,11%and 37.7%in Precision and Accuracy.Indian Meteorological Satellite INSAT-3D’s ocean data is a typical example of testing the proposed model.The experimental result shows the effectiveness of the proposed data model and its advantages in machine understanding and IR.
文摘Mining the content from an information database provides challenging solutions to the industry experts and researchers, due to the overcrowded information in huge data. In web searching, the information retrieved is not an appropriate, because it gives ambiguous information for the user query, and the user cannot get relevant information within the stipulated time. To overcome these issues, we propose a new methodology for information retrieval EPCRR by providing the top most exact information to the user, by using the collaborative clustered automated filter which makes use of the collaborative data set and filter works on the prediction by providing the highest ranking for the exact data retrieved. The retrieval works on the basis of recommendation of data which consists of relevant data set with highest priority from the cluster of data which is on high usage. In this work, we make use of the automated wrapper which works similar to the meta crawler functionality and it obtains the content in the semantic usage data format. Obtained information from the user to the agent will be ranked based on the Enabled Pile clustered data with respect to the metadata information from the agent and end-user. The information is given to the end-user with the top most ranking data within the stipulated time and the remaining top information will be moved to the data repository for future use. The data collected will remain stable based on the user preference and works on the intelligence system approach in which the user can choose any information under any instances and can be provided with suitable high range of exact content. In this approach, we find that the proposed algorithm has produced better results than existing work and it costs less online computation time.
基金The Young Teachers Scientific Research Foundation (YTSRF) of Nanjing University of Science and Technology in the Year of2005-2006.
文摘A method that combines category-based and keyword-based concepts for a better information retrieval system is introduced. To improve document clustering, a document similarity measure based on cosine vector and keywords frequency in documents is proposed, but also with an input ontology. The ontology is domain specific and includes a list of keywords organized by degree of importance to the categories of the ontology, and by means of semantic knowledge, the ontology can improve the effects of document similarity measure and feedback of information retrieval systems. Two approaches to evaluating the performance of this similarity measure and the comparison with standard cosine vector similarity measure are also described.
文摘Enhancements in technology always follow Consumer requirements. Consumer requires best of service with least possible mismatch and on time. Numerous applications available today are based on Web Services and Cloud Computing. Recently, there exist many Web Services with similar functional characteristics. Choosing “a-right” Service from group of similar Web Service is a complicated task for Service Consumer. In that case, Service Consumer can discover the required Web Service using non functional attributes of the Web Services such as QoS. Proposed layered architecture and Web Service-Cloud, i.e. WS-Cloud computing Framework synthesizes the non functional attributes that includes reliability, availability, response time, latency etc. The Service Consumer is projected to provide the QoS requirements as part of Service discovery query. This framework will discover and filter the Web Services form the cloud and rank them according to Service Consumer preferences to facilitate Service on time.