期刊文献+
共找到643篇文章
< 1 2 33 >
每页显示 20 50 100
A Sub-element Adaptive Shock Capturing Approach for Discontinuous Galerkin Methods 被引量:1
1
作者 Johannes Markert Gregor Gassner Stefanie Walch 《Communications on Applied Mathematics and Computation》 2023年第2期679-721,共43页
In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy o... In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy of low-to-high-order discretizations on this set of data,including a first-order finite volume scheme up to the full-order DG scheme.The dif-ferent DG discretizations are then blended according to sub-element troubled cell indicators,resulting in a final discretization that adaptively blends from low to high order within a single DG element.The goal is to retain as much high-order accuracy as possible,even in simula-tions with very strong shocks,as,e.g.,presented in the Sedov test.The framework retains the locality of the standard DG scheme and is hence well suited for a combination with adaptive mesh refinement and parallel computing.The numerical tests demonstrate the sub-element adaptive behavior of the new shock capturing approach and its high accuracy. 展开更多
关键词 High-order methods discontinuous galerkin spectral element method finite volume method Shock capturing ASTROPHYSICS Stellar physics
下载PDF
A multithreaded parallel upwind sweep algorithm for the S_(N) transport equations discretized with discontinuous finite elements
2
作者 Zhi‑Wei Zong Mao‑Song Cheng +1 位作者 Ying‑Chi Yu Zhi‑Min Dai 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第12期229-241,共13页
The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can ov... The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can overcome the deficiencies of conventionally structured meshes in complex geometry modeling. A multithreaded parallel upwind sweep algorithm for S_(N) transport was proposed to achieve a more accurate geometric description and improve the computational efficiency. The spatial variables were discretized using the standard discontinuous Galerkin finite-element method. The angular flux transmission between neighboring meshes was handled using an upwind scheme. In addition, a combination of a mesh transport sweep and angular iterations was realized using a multithreaded parallel technique. The algorithm was implemented in the 2D/3D S_(N) transport code ThorSNIPE, and numerical evaluations were conducted using three typical benchmark problems:IAEA, Kobayashi-3i, and VENUS-3. These numerical results indicate that the multithreaded parallel upwind sweep algorithm can achieve high computational efficiency. ThorSNIPE, with a multithreaded parallel upwind sweep algorithm, has good reliability, stability, and high efficiency, making it suitable for complex shielding calculations. 展开更多
关键词 Shielding calculation Discrete ordinates method discontinuous galerkin finite element method Unstructured meshes
下载PDF
A symplectic finite element method based on Galerkin discretization for solving linear systems
3
作者 Zhiping QIU Zhao WANG Bo ZHU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第8期1305-1316,共12页
We propose a novel symplectic finite element method to solve the structural dynamic responses of linear elastic systems.For the dynamic responses of continuous medium structures,the traditional numerical algorithm is ... We propose a novel symplectic finite element method to solve the structural dynamic responses of linear elastic systems.For the dynamic responses of continuous medium structures,the traditional numerical algorithm is the dissipative algorithm and cannot maintain long-term energy conservation.Thus,a symplectic finite element method with energy conservation is constructed in this paper.A linear elastic system can be discretized into multiple elements,and a Hamiltonian system of each element can be constructed.The single element is discretized by the Galerkin method,and then the Hamiltonian system is constructed into the Birkhoffian system.Finally,all the elements are combined to obtain the vibration equation of the continuous system and solved by the symplectic difference scheme.Through the numerical experiments of the vibration response of the Bernoulli-Euler beam and composite plate,it is found that the vibration response solution and energy obtained with the algorithm are superior to those of the Runge-Kutta algorithm.The results show that the symplectic finite element method can keep energy conservation for a long time and has higher stability in solving the dynamic responses of linear elastic systems. 展开更多
关键词 galerkin finite element method linear system structural dynamic response symplectic difference scheme
下载PDF
Adaptive discontinuous finite element quadrature sets over an icosahedron for discrete ordinates method 被引量:2
4
作者 Ni Dai Bin Zhang +1 位作者 Yi-Xue Chen Dao-Gang Lu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第9期94-104,共11页
The discrete ordinates(S N)method requires numerous angular unknowns to achieve the desired accu-racy for shielding calculations involving strong anisotropy.Our objective is to develop an angular adaptive algorithm in... The discrete ordinates(S N)method requires numerous angular unknowns to achieve the desired accu-racy for shielding calculations involving strong anisotropy.Our objective is to develop an angular adaptive algorithm in the S N method to automatically optimize the angular distribution and minimize angular discretization errors with lower expenses.The proposed method enables linear dis-continuous finite element quadrature sets over an icosahe-dron to vary their quadrature orders in a one-twentieth sphere so that fine resolutions can be applied to the angular domains that are important.An error estimation that operates in conjunction with the spherical harmonics method is developed to determine the locations where more refinement is required.The adaptive quadrature sets are applied to three duct problems,including the Kobayashi benchmarks and the IRI-TUB research reactor,which emphasize the ability of this method to resolve neutron streaming through ducts with voids.The results indicate that the performance of the adaptive method is more effi-cient than that of uniform quadrature sets for duct transport problems.Our adaptive method offers an appropriate placement of angular unknowns to accurately integrate angular fluxes while reducing the computational costs in terms of unknowns and run times. 展开更多
关键词 Shielding calculation Discrete ordinates method Angular adaptivity discontinuous finite element
下载PDF
Mixed time discontinuous space-time finite element method for convection diffusion equations 被引量:1
5
作者 刘洋 李宏 何斯日古楞 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第12期1579-1586,共8页
A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order... A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method. 展开更多
关键词 convection diffusion equations mixed finite element method time discontinuous space-time finite element method CONVERGENCE
下载PDF
Validation and application of three-dimensional discontinuous deformation analysis with tetrahedron finite element meshed block 被引量:4
6
作者 Jun Liu Zheng Nan Ping Yi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第6期1602-1616,共15页
In the last decade, three dimensional discontin- uous deformation analyses (3D DDA) has attracted more and more attention of researchers and geotechnical engineers worldwide. The original DDA formulation utilizes a ... In the last decade, three dimensional discontin- uous deformation analyses (3D DDA) has attracted more and more attention of researchers and geotechnical engineers worldwide. The original DDA formulation utilizes a linear displacement function to describe the block movement and deformation, which would cause block expansion under rigid body rotation and thus limit its capability to model block de- formation. In this paper, 3D DDA is coupled with tetrahe- dron finite elements to tackle these two problems. Tetrahe- dron is the simplest in the 3D domain and makes it easy to implement automatic discretization, even for complex topol- ogy shape. Furthermore, element faces will remain planar and element edges will remain straight after deformation for tetrahedron finite elements and polyhedral contact detection schemes can be used directly. The matrices of equilibrium equations for this coupled method are given in detail and an effective contact searching algorithm is suggested. Valida- tion is conducted by comparing the results of the proposed coupled method with that of physical model tests using one of the most common failure modes, i.e., wedge failure. Most of the failure modes predicted by the coupled method agree with the physical model results except for 4 cases out of the total 65 cases. Finally, a complex rockslide example demon- strates the robustness and versatility of the coupled method. 展开更多
关键词 Three-dimensional discontinuous deformation analysis finite element method Coupled method Valida-tion
下载PDF
Error estimates of H^1-Galerkin mixed finite element method for Schrdinger equation 被引量:28
7
作者 LIU Yang LI Hong WANG Jin-feng 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2009年第1期83-89,共7页
An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t... An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition. 展开更多
关键词 H1-galerkin mixed finite element method Schrdinger equation LBB condition optimal error estimates
下载PDF
Weak Galerkin Finite Element Method for the Unsteady Stokes Equation 被引量:4
8
作者 Chen Ning Haiming Gu 《American Journal of Computational Mathematics》 2018年第1期108-119,共12页
The Weak Galerkin (WG) finite element method for the unsteady Stokes equations in the primary velocity-pressure formulation is introduced in this paper. Optimal-order error estimates are established for the correspond... The Weak Galerkin (WG) finite element method for the unsteady Stokes equations in the primary velocity-pressure formulation is introduced in this paper. Optimal-order error estimates are established for the corresponding numerical approximation in an H1 norm for the velocity, and L2 norm for both the velocity and the pressure by use of the Stokes projection. 展开更多
关键词 WEAK galerkin finite element methods UNSTEADY STOKES EQUATIONS STOKES PROJECTION
下载PDF
NEW ALGORITHM OF COUPLING ELEMENT-FREE GALERKIN WITH FINITE ELEMENT METHOD
9
作者 ZHAO Guang-ming(赵光明) SONG Shun-cheng(宋顺成) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第8期982-988,共7页
Through the construction of a new ramp function, the element-flee Galerkin method and finite element coupling method were applied to the whole field, and was made fit for the structure of element nodes within the inte... Through the construction of a new ramp function, the element-flee Galerkin method and finite element coupling method were applied to the whole field, and was made fit for the structure of element nodes within the interface regions, both satisfying the essential boundary conditions and deploying meshless nodes and finite elements in a convenient and flexible way, which can meet the requirements of computation for complicated field. The comparison between the results of the present study and the corresponding analytical solutions shows this method is feasible and effective. 展开更多
关键词 element-free galerkin method COUPLING ramp function finite element
下载PDF
Adaptive mixed least squares Galerkin/Petrov finite element method for stationary conduction convection problems
10
作者 张运章 侯延仁 魏红波 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第10期1269-1286,共18页
An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any co... An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any combination of discrete velocity and pressure spaces without requiring the Babuska-Brezzi stability condition. Using the general theory of Verfiirth, the posteriori error estimates of the residual type are derived. Finally, numerical tests are presented to illustrate the effectiveness of the method. 展开更多
关键词 conduction convection problem posteriori error analysis mixed finite element adaptive finite element least squares galerkin/Petrov method
下载PDF
The discontinuous Petrov-Galerkin method for one-dimensional compressible Euler equations in the Lagrangian coordinate 被引量:5
11
作者 赵国忠 蔚喜军 郭鹏云 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期96-103,共8页
In this paper, a Petrov-Galerkin scheme named the Runge-Kutta control volume (RKCV) discontinuous finite ele- ment method is constructed to solve the one-dimensional compressible Euler equations in the Lagrangian co... In this paper, a Petrov-Galerkin scheme named the Runge-Kutta control volume (RKCV) discontinuous finite ele- ment method is constructed to solve the one-dimensional compressible Euler equations in the Lagrangian coordinate. Its advantages include preservation of the local conservation and a high resolution. Compared with the Runge-Kutta discon- tinuous Galerkin (RKDG) method, the RKCV method is easier to implement. Moreover, the advantages of the RKCV and the Lagrangian methods are combined in the new method. Several numerical examples are given to illustrate the accuracy and the reliability of the algorithm. 展开更多
关键词 compressible Euler equations Runge-Kutta control volume discontinuous finite element method Lagrangian coordinate
下载PDF
Membrane finite element method for simulating fluid flow in porous medium 被引量:1
12
作者 Mei-li ZHAN Wen-jie ZHANG Jin-chang SHENG Jian-hui LI Shu-yuan HE 《Water Science and Engineering》 EI CAS 2009年第2期43-51,共9页
A new membrane finite element method for modeling fluid flow in a porous medium is presented in order to quickly and accurately simulate the geo-membrane fabric used in civil engineering. It is based on discontinuous ... A new membrane finite element method for modeling fluid flow in a porous medium is presented in order to quickly and accurately simulate the geo-membrane fabric used in civil engineering. It is based on discontinuous finite element theory, and can be easily coupled with the normal Galerkin finite element method. Based on the saturated seepage equation, the element coefficient matrix of the membrane element method is derived, and a geometric transform relation for the membrane element between a global coordinate system and a local coordinate system is obtained. A method for the determination of the fluid flux conductivity of the membrane element is presented. This method provides a basis for determining discontinuous parameters in discontinuous finite element theory. An anti-seepage problem regarding the foundation of a building is analyzed by coupling the membrane finite element method with the normal Galerkin finite element method. The analysis results demonstrate the utility and superiority of the membrane finite element method in fluid flow analysis of a porous medium. 展开更多
关键词 membrane finite element normal galerkin finite element method coupling fluidflow in porous medium
下载PDF
Finite Element Method for a Kind of Two-Dimensional Space-Fractional Diffusion Equation with Its Implementation 被引量:1
13
作者 Beiping Duan Zhoushun Zheng Wen Cao 《American Journal of Computational Mathematics》 2015年第2期135-157,共23页
In this article, we consider a two-dimensional symmetric space-fractional diffusion equation in which the space fractional derivatives are defined in Riesz potential sense. The well-posed feature is guaranteed by ener... In this article, we consider a two-dimensional symmetric space-fractional diffusion equation in which the space fractional derivatives are defined in Riesz potential sense. The well-posed feature is guaranteed by energy inequality. To solve the diffusion equation, a fully discrete form is established by employing Crank-Nicolson technique in time and Galerkin finite element method in space. The stability and convergence are proved and the stiffness matrix is given analytically. Three numerical examples are given to confirm our theoretical analysis in which we find that even with the same initial condition, the classical and fractional diffusion equations perform differently but tend to be uniform diffusion at last. 展开更多
关键词 galerkin finite element method SYMMETRIC Space-Fractional Diffusion Equation Stability Convergence IMPLEMENTATION
下载PDF
SUPG finite element method based on penalty function for lid-driven cavity flow up to Re = 27500 被引量:1
14
作者 Da-Guo Wang Qing-Xiang Shui 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第1期54-63,共10页
A streamline upwind/Petrov-Galerkin (SUPG) finite element method based on a penalty function is pro- posed for steady incompressible Navier-Stokes equations. The SUPG stabilization technique is employed for the for-... A streamline upwind/Petrov-Galerkin (SUPG) finite element method based on a penalty function is pro- posed for steady incompressible Navier-Stokes equations. The SUPG stabilization technique is employed for the for- mulation of momentum equations. Using the penalty function method, the continuity equation is simplified and the pres- sure of the momentum equations is eliminated. The lid-driven cavity flow problem is solved using the present model. It is shown that steady flow simulations are computable up to Re = 27500, and the present results agree well with previous solutions. Tabulated results for the properties of the primary vortex are also provided for benchmarking purposes. 展开更多
关键词 Streamline upwind/Petrov-galerkin (SUPG)finite element method Lid-driven cavity flow Penaltyfunction method High Reynolds number
下载PDF
DISCONTINUITY-CAPTURING FINITE ELEMENT COMPUTATION OF UNSTEADY FLOW WITH ADAPTIVE UNSTRUCTURED MESH
15
作者 董根金 陆夕云 庄礼贤 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第4期347-353,共7页
A discontinuity-capturing scheme of finite element method(FEM)is proposed.The unstructured-grid technique combined with a new type of adaptive mesh approach is developed for both compressible and incompressible unstea... A discontinuity-capturing scheme of finite element method(FEM)is proposed.The unstructured-grid technique combined with a new type of adaptive mesh approach is developed for both compressible and incompressible unsteady flows,which exhibits the capability of capturing the shock waves and/or thin shear layers accurately in an unsteady viscous flow at high Reynolds number. In particular,a new testing variable,i.e.,the disturbed kinetic energy E,is suggested and used in the adaptive mesh computation,which is universally applicable to the capturing of both shock waves and shear layers in the inviscid flow and viscous flow at high Reynolds number.Based on several calculated examples,this approach has been proved to be effective and efficient for the calculations of compressible and incompressible flows. 展开更多
关键词 finite element method unstructured and adaptive mesh discontinuity capture unsteady viscous flow
下载PDF
Surrounding rock deformation analysis of underground caverns with multi-body finite element method
16
作者 Wan-jin LIANG Chao SU Fei WANG Xiao-jun TANG 《Water Science and Engineering》 EI CAS 2009年第3期71-77,共7页
Discontinuous deformation problems are common in rock engineering. Numerical analysis methods based on system models of the discrete body can better solve these problems. One of the most effective solutions is discont... Discontinuous deformation problems are common in rock engineering. Numerical analysis methods based on system models of the discrete body can better solve these problems. One of the most effective solutions is discontinuous deformation analysis (DDA) method, but the DDA method brings about rock embedding problems when it uses the strain assumption in elastic deformation and adopts virtual springs to simulate the contact problems. The multi-body finite element method (FEM) proposed in this paper can solve the problems of contact and deformation of blocks very well because it integrates the FEM and multi-body system dynamics theory. It is therefore a complete method for solving discontinuous deformation problems through balance equations of the contact surface and for simulating the displacement of whole blocks. In this study, this method was successfully used for deformation analysis of underground caverns in stratified rock. The simulation results indicate that the multi-body FEM can show contact forces and the stress states on contact surfaces better than DDA, and that the results calculated with the multi-body FEM are more consistent with engineering practice than those calculated with DDA method. 展开更多
关键词 multi-body finite element method discontinuous deformation surrounding rockdeformation elastic contact coordination displacement
下载PDF
A Posteriori Error Estimates for Finite Element Methods for Systems of Nonlinear,Dispersive Equations
17
作者 Ohannes A.Karakashian Michael M.Wise 《Communications on Applied Mathematics and Computation》 2022年第3期823-854,共32页
The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite ... The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite element methods for these systems and presented a priori error estimates for the semidiscrete schemes.In this sequel,we present a posteriori error estimates for the semidiscrete and fully discrete approximations introduced in[9].The key tool employed to effect our analysis is the dispersive reconstruction devel-oped by Karakashian and Makridakis[20]for related discontinuous Galerkin methods.We conclude by providing a set of numerical experiments designed to validate the a posteriori theory and explore the effectivity of the resulting error indicators. 展开更多
关键词 finite element methods discontinuous galerkin methods Korteweg-de Vries equation A posteriori error estimates Conservation laws Nonlinear equations Dispersive equations
下载PDF
Meshless Local Discontinuous Petrov-Galerkin Method with Application to Blasting Problems
18
作者 强洪夫 高巍然 《Transactions of Tianjin University》 EI CAS 2008年第5期376-383,共8页
A meshless local discontinuous Petrov-Galerkin (MLDPG) method based on the local symmetric weak form (LSWF) is presented with the application to blasting problems. The derivation is similar to that of mesh-based Runge... A meshless local discontinuous Petrov-Galerkin (MLDPG) method based on the local symmetric weak form (LSWF) is presented with the application to blasting problems. The derivation is similar to that of mesh-based Runge-Kutta Discontinuous Galerkin (RKDG) method. The solutions are reproduced in a set of overlapped spherical sub-domains, and the test functions are employed from a partition of unity of the local basis functions. There is no need of any traditional non-overlapping mesh either for local approximation purpose or for Galerkin integration purpose in the presented method. The resulting MLDPG method is a meshless, stable, high-order accurate and highly parallelizable scheme which inherits both the advantages of RKDG and meshless method (MM), and it can handle the problems with extremely complicated physics and geometries easily. Three numerical examples of the one-dimensional Sod shock-tube problem, the blast-wave problem and the Woodward-Colella interacting shock wave problem are given. All the numerical results are in good agreement with the closed solutions. The higher-order MLDPG schemes can reproduce more accurate solution than the lower-order schemes. 展开更多
关键词 MLDPG LSWF 网孔结构 建筑特点
下载PDF
Numerical Analysis of Diffusion and Heat Conduction Problems by Means of Discontinuous Galerkin Methods in Space and Time
19
作者 Sandra Carstens Detlef Kuhl 《材料科学与工程(中英文B版)》 2012年第1期70-80,共11页
关键词 时空有限元方法 反应扩散过程 时间积分 空间离散 热传导问题 数值分析 间断 galerkin
下载PDF
The Finite Element Solutions to the Semiconductor Equations
20
作者 管平 王文胜 《Journal of Southeast University(English Edition)》 EI CAS 1999年第1期75-80,共6页
本文研究具有混合边界条件半导体方程的近似解,给出了两种近似格式:Galerkin离散格式和混合变量离散格式。
关键词 半导体方程 有限元方法 galerkin方法 混合变量方法
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部