期刊文献+
共找到1,678篇文章
< 1 2 84 >
每页显示 20 50 100
H^1 space-time discontinuous finite element method for convection-diffusion equations
1
作者 何斯日古楞 李宏 刘洋 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第3期371-384,共14页
An H1 space-time discontinuous Galerkin (STDG) scheme for convection- diffusion equations in one spatial dimension is constructed and analyzed. This method is formulated by combining the H1 Galerkin method and the s... An H1 space-time discontinuous Galerkin (STDG) scheme for convection- diffusion equations in one spatial dimension is constructed and analyzed. This method is formulated by combining the H1 Galerkin method and the space-time discontinuous finite element method that is discontinuous in time and continuous in space. The existence and the uniqueness of the approximate solution are proved. The convergence of the scheme is analyzed by using the techniques in the finite difference and finite element methods. An optimal a-priori error estimate in the L∞ (H1) norm is derived. The numerical exper- iments are presented to verify the theoretical results. 展开更多
关键词 convection-diffusion equation H1 method space-time discontinuous finiteelement method error estimate
下载PDF
THE SUPERCLOSENESS OF THE FINITE ELEMENT METHOD FOR A SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEM ON A BAKHVALOV-TYPE MESH IN 2D
2
作者 Chunxiao ZHANG Jin ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1572-1593,共22页
For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of ... For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments. 展开更多
关键词 singularly perturbed convection-diffusion finite element method SUPERCLOSENESS Bakhvalov-type mesh
下载PDF
DISCONTINUOUS FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION EQUATIONS
3
作者 Abdellatif Agouzal (Laboratoire de Mathematiques Appliquees, Universite Lyonl, 43 Boulevard du 11 Novembre 1918 69622 Villeurbanne Cedex, France.) 《Journal of Computational Mathematics》 SCIE CSCD 2000年第6期639-644,共6页
A discontinuous finite element method for convection-diffusion equations is proposed and analyzed. This scheme is designed to produce an approximate solution which is completely discontinuous. Optimal order of converg... A discontinuous finite element method for convection-diffusion equations is proposed and analyzed. This scheme is designed to produce an approximate solution which is completely discontinuous. Optimal order of convergence is obtained for model problem. This is the same convergence rate known for the classical methods. [ABSTRACT FROM AUTHOR] 展开更多
关键词 discontinuous finite element method convection-diffusion equations.
原文传递
A multithreaded parallel upwind sweep algorithm for the S_(N) transport equations discretized with discontinuous finite elements
4
作者 Zhi‑Wei Zong Mao‑Song Cheng +1 位作者 Ying‑Chi Yu Zhi‑Min Dai 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第12期229-241,共13页
The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can ov... The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can overcome the deficiencies of conventionally structured meshes in complex geometry modeling. A multithreaded parallel upwind sweep algorithm for S_(N) transport was proposed to achieve a more accurate geometric description and improve the computational efficiency. The spatial variables were discretized using the standard discontinuous Galerkin finite-element method. The angular flux transmission between neighboring meshes was handled using an upwind scheme. In addition, a combination of a mesh transport sweep and angular iterations was realized using a multithreaded parallel technique. The algorithm was implemented in the 2D/3D S_(N) transport code ThorSNIPE, and numerical evaluations were conducted using three typical benchmark problems:IAEA, Kobayashi-3i, and VENUS-3. These numerical results indicate that the multithreaded parallel upwind sweep algorithm can achieve high computational efficiency. ThorSNIPE, with a multithreaded parallel upwind sweep algorithm, has good reliability, stability, and high efficiency, making it suitable for complex shielding calculations. 展开更多
关键词 Shielding calculation Discrete ordinates method discontinuous Galerkin finite element method Unstructured meshes
下载PDF
A Full Predictor-Corrector Finite Element Method for the One-Dimensional Heat Equation with Time-Dependent Singularities
5
作者 Jake L. Nkeck 《Journal of Applied Mathematics and Physics》 2024年第4期1364-1382,共19页
The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent ... The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method. 展开更多
关键词 SINGULARITIES finite element methods Heat equation Predictor-Corrector Algorithm
下载PDF
ASYMPTOTICAL STABILITY OF NEUTRAL REACTION-DIFFUSION EQUATIONS WITH PCAS AND THEIR FINITE ELEMENT METHODS
6
作者 韩豪 张诚坚 《Acta Mathematica Scientia》 SCIE CSCD 2023年第4期1865-1880,共16页
This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their... This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their expressions and asymptotical stability criteria.Second,for the semi-discrete and one-parameter fully-discrete finite element methods solving the above equations,we work out the sufficient conditions for assuring that the finite element solutions are asymptotically stable.Finally,with a typical example with numerical experiments,we illustrate the applicability of the obtained theoretical results. 展开更多
关键词 neutral reaction-diffusion equations piecewise continuous arguments asymptotical stability finite element methods numerical experiment
下载PDF
Mixed time discontinuous space-time finite element method for convection diffusion equations 被引量:1
7
作者 刘洋 李宏 何斯日古楞 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第12期1579-1586,共8页
A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order... A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method. 展开更多
关键词 convection diffusion equations mixed finite element method time discontinuous space-time finite element method CONVERGENCE
下载PDF
A Posteriori Error Estimate of Two Grid Mixed Finite Element Methods for Semilinear Elliptic Equations
8
作者 Yiming Wen Luoping Chen Jiajia Dai 《Journal of Applied Mathematics and Physics》 2023年第2期361-376,共16页
In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the m... In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the mixed method equations. Then, the averaging technique is used to construct the a posteriori error estimates of the two-grid mixed finite element method and theoretical analysis are given for the error estimators. Finally, we give some numerical examples to verify the reliability and efficiency of the a posteriori error estimator. 展开更多
关键词 Two-Grid Mixed finite element methods Posteriori Error Estimates Semilinear Elliptic equations Averaging Technique
下载PDF
Two-grid method for characteristic mixed finite-element solutions of nonlinear convection-diffusion equations
9
作者 QINXinqiang MAYichen GONGChunqiongt 《Journal of Chongqing University》 CAS 2004年第1期92-96,共5页
A two-grid method for solving nonlinear convection-dominated diffusion equations is presented. The method use discretizations based on a characteristic mixed finite-element method and give the linearization for nonlin... A two-grid method for solving nonlinear convection-dominated diffusion equations is presented. The method use discretizations based on a characteristic mixed finite-element method and give the linearization for nonlinear systems by two steps. The error analysis shows that the two-grid scheme combined with the characteristic mixed finite-element method can decrease numerical oscillation caused by dominated convections and solve nonlinear advection-dominated diffusion problems efficiently. 展开更多
关键词 convection-diffusion equations characteristic mixed finite element two-grid method CONVERGENCE
下载PDF
Hermite Finite Element Method for Vibration Problem of Euler-Bernoulli Beam on Viscoelastic Pasternak Foundation
10
作者 Pengfei Ji Zhe Yin 《Engineering(科研)》 2024年第10期337-352,共16页
Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Eul... Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis. 展开更多
关键词 Viscoelastic Pasternak Foundation Beam Vibration equation Hermite finite element method Error Estimation Numerical Simulation
下载PDF
Domain Decomposition Method Modified by Characteristic Finite Element Procedure for System of Parabolic Equations with Discontinuous Coefficients
11
作者 Luo Chang 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2006年第4期336-347,共12页
In this work, system of parabolic equations with discontinuous coefficients is studied. The domain decomposition method modified by a characteristic finite element procedure is applied. A function is defined to approx... In this work, system of parabolic equations with discontinuous coefficients is studied. The domain decomposition method modified by a characteristic finite element procedure is applied. A function is defined to approximate the fluxes on inner boundaries by using the solution at the previous level. Thus the parallelism is achieved. Convergence analysis and error estimate are also presented. 展开更多
关键词 间断系数 比喻方程系统 域分解 特征有限元
下载PDF
NUMERICAL SIMULATION OF UNSTEADY-STATE UNDEREXPANDED JET USING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 被引量:3
12
作者 陈二云 李志刚 +3 位作者 马大为 乐贵高 赵改平 任杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期89-93,共5页
A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underex... A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet. 展开更多
关键词 jets computational fluid dynamics multiple Mach disks vortex ring discontinuous Galerkin finite element method
下载PDF
NUMERICAL INVESTIGATION OF TOROIDAL SHOCK WAVES FOCUSING USING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 被引量:2
13
作者 陈二云 赵改平 +1 位作者 卓文涛 杨爱玲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期9-15,共7页
A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations.... A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations. For validating the numerical method, the shock-tube problem with exact solution is computed, and the computed results agree well with the exact cases. Then, several cases with higher incident Mach numbers varying from 2.0 to 5.0 are simulated. Simulation results show that complicated flow-field structures of toroidal shock wave diffraction, reflection, and focusing in a co-axial cylindrical shock tube can be obtained at different incident Mach numbers and the numerical solutions appear steep gradients near the focusing point, which illustrates the DG method has higher accuracy and better resolution near the discontinuous point. Moreover, the focusing peak pres- sure with different grid scales is compared. 展开更多
关键词 shock wave focusing spherical double Math reflection discontinuous galerkin finite element method
下载PDF
DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR A FORWARD-BACKWARD HEAT EQUATION
14
作者 LiHong WeiXiaoxi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2005年第1期97-104,共8页
A space-time finite element method,discontinuous in time but continuous in space,is studied to solve the nonlinear forward-backward heat equation.A linearized technique is introduced in order to obtain the error estim... A space-time finite element method,discontinuous in time but continuous in space,is studied to solve the nonlinear forward-backward heat equation.A linearized technique is introduced in order to obtain the error estimates of the approximate solutions.And the numerical simulations are given. 展开更多
关键词 space-time finite element method linearized equation error estimate.
下载PDF
THE OPTIMAL CONVERGENCE ORDER OF THE DISCONTINUOUS FINITE ELEMENT METHODS FOR FIRST ORDER HYPERBOLIC SYSTEMS
15
作者 Tie Zhang Datao Shi Zhen Li 《Journal of Computational Mathematics》 SCIE EI CSCD 2008年第5期689-701,共13页
In this paper, a discontinuous finite element method for the positive and symmetric, first-order hyperbolic systems (steady and nonsteady state) is constructed and analyzed by using linear triangle elements, and th... In this paper, a discontinuous finite element method for the positive and symmetric, first-order hyperbolic systems (steady and nonsteady state) is constructed and analyzed by using linear triangle elements, and the O(h^2)-order optimal error estimates are derived under the assumption of strongly regular triangulation and the Ha-regularity for the exact solutions. The convergence analysis is based on some superclose estimates of the interpolation approximation. Finally, we discuss the Maxwell equations in a two-dimensional domain, and numerical experiments are given to validate the theoretical results. 展开更多
关键词 First order hyperbolic systems discontinuous finite element method Convergence order estimate.
原文传递
Adaptive Finite Element Method for Steady Convection-Diffusion Equation
16
作者 Gelaw Temesgen Mekuria Jakkula Anand Rao 《American Journal of Computational Mathematics》 2016年第3期275-285,共12页
This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solution of this equation possesses singularities in the form of boundary or interior layers due to non-smooth boundary condi... This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solution of this equation possesses singularities in the form of boundary or interior layers due to non-smooth boundary conditions. To overcome such singularities arising from these critical regions, the adaptive finite element method is employed. This scheme is based on the streamline diffusion method combined with Neumann-type posteriori estimator. The effectiveness of this approach is illustrated by different examples with several numerical experiments. 展开更多
关键词 convection-diffusion Problem Streamline Diffusion finite element method Boundary and Interior Layers A Posteriori Error Estimators Adaptive Mesh Refinement
下载PDF
HIGH ACCURACY FINITE VOLUME ELEMENT METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS 被引量:4
17
作者 Wang Tongke(王同科) 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2002年第2期213-225,共13页
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me... In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective. 展开更多
关键词 SECOND order ordinary differential equation TWO-POINT boundary value problem high accuracy finite volume element method error estimate.
下载PDF
An RKDG finite element method for the one-dimensional inviscid compressible gas dynamics equations in a Lagrangian coordinate 被引量:2
18
作者 赵国忠 蔚喜军 张荣培 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期50-63,共14页
In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discreti... In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical ?ux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical ?ux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm. 展开更多
关键词 compressible gas dynamic equations RKDG finite element method Lagrangian coordinate multi- medium fluid
下载PDF
Unified analysis for stabilized methods of low-order mixed finite elements for stationary Navier-Stokes equations 被引量:2
19
作者 陈刚 冯民富 何银年 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第8期953-970,共18页
A unified analysis is presented for the stabilized methods including the pres- sure projection method and the pressure gradient local projection method of conforming and nonconforming low-order mixed finite elements f... A unified analysis is presented for the stabilized methods including the pres- sure projection method and the pressure gradient local projection method of conforming and nonconforming low-order mixed finite elements for the stationary Navier-Stokes equa- tions. The existence and uniqueness of the solution and the optimal error estimates are proved. 展开更多
关键词 Navier-Stokes equation Ladyzhenskaya-Babu^ka-Brezzi (LBB) condition low-order finite element pressure projection method pressure gradient local projectionmethod
下载PDF
Adaptive discontinuous finite element quadrature sets over an icosahedron for discrete ordinates method 被引量:2
20
作者 Ni Dai Bin Zhang +1 位作者 Yi-Xue Chen Dao-Gang Lu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第9期94-104,共11页
The discrete ordinates(S N)method requires numerous angular unknowns to achieve the desired accu-racy for shielding calculations involving strong anisotropy.Our objective is to develop an angular adaptive algorithm in... The discrete ordinates(S N)method requires numerous angular unknowns to achieve the desired accu-racy for shielding calculations involving strong anisotropy.Our objective is to develop an angular adaptive algorithm in the S N method to automatically optimize the angular distribution and minimize angular discretization errors with lower expenses.The proposed method enables linear dis-continuous finite element quadrature sets over an icosahe-dron to vary their quadrature orders in a one-twentieth sphere so that fine resolutions can be applied to the angular domains that are important.An error estimation that operates in conjunction with the spherical harmonics method is developed to determine the locations where more refinement is required.The adaptive quadrature sets are applied to three duct problems,including the Kobayashi benchmarks and the IRI-TUB research reactor,which emphasize the ability of this method to resolve neutron streaming through ducts with voids.The results indicate that the performance of the adaptive method is more effi-cient than that of uniform quadrature sets for duct transport problems.Our adaptive method offers an appropriate placement of angular unknowns to accurately integrate angular fluxes while reducing the computational costs in terms of unknowns and run times. 展开更多
关键词 Shielding calculation Discrete ordinates method Angular adaptivity discontinuous finite element
下载PDF
上一页 1 2 84 下一页 到第
使用帮助 返回顶部