In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding ...In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems.展开更多
Binary wolf pack algorithm (BWPA) is a kind of intelligence algorithm which can solve combination optimization problems in discrete spaces.Based on BWPA, an improved binary wolf pack algorithm (AIBWPA) can be proposed...Binary wolf pack algorithm (BWPA) is a kind of intelligence algorithm which can solve combination optimization problems in discrete spaces.Based on BWPA, an improved binary wolf pack algorithm (AIBWPA) can be proposed by adopting adaptive step length and improved update strategy of wolf pack. AIBWPA is applied to 10 classic 0-1 knapsack problems and compared with BWPA, DPSO, which proves that AIBWPA has higher optimization accuracy and better computational robustness. AIBWPA makes the parameters simple, protects the population diversity and enhances the global convergence.展开更多
集值折扣{0-1}背包问题(Discounted{0-1}Knapsack Problem with Setup,D{0-1}KPS)指在同一类别中可选择多个项,每个类别对目标函数和约束条件都增加了额外的固定设置成本。提出一种求解D{0-1}KPS的改进动态规划算法,算法针对D{0-1}KPS...集值折扣{0-1}背包问题(Discounted{0-1}Knapsack Problem with Setup,D{0-1}KPS)指在同一类别中可选择多个项,每个类别对目标函数和约束条件都增加了额外的固定设置成本。提出一种求解D{0-1}KPS的改进动态规划算法,算法针对D{0-1}KPS问题本身结构特征,融合多目标优化问题中非支配解集思想,通过利用状态之间的支配与非支配关系,对每个阶段的状态集进行剪枝,形成非支配状态集,从而提出改进动态规划算法。通过实例验证了该算法的有效性和可行性。展开更多
群智能启发式算法求解折扣{0-1}背包问题(D{0-1}KP)时,为提升求解效率和求解质量,需采用某种修复与优化策略将非正常编码个体转换为符合解约束条件的编码个体。在引入项集价值密度概念基础上,以粒子群算法(PSO)为例,提出一组基于项集的...群智能启发式算法求解折扣{0-1}背包问题(D{0-1}KP)时,为提升求解效率和求解质量,需采用某种修复与优化策略将非正常编码个体转换为符合解约束条件的编码个体。在引入项集价值密度概念基础上,以粒子群算法(PSO)为例,提出一组基于项集的贪婪修复与优化方法(group greedy repair and optimization algorithm,GGROA),并进一步构造PSO-GGRDKP算法(PSO based GGROA for solving D{0-1}KP)以探究GGROA方法的可行性和性能。PSO-NGROADKP(PSO based NGROA for solving D{0-1}KP)和PSO-GRDKP(PSO based GROA for solving D{0-1}KP)是基于项贪心修复与优化方法的粒子群算法。在D{0-1}KP标准数据集的实验结果表明:与PSO-NGROADKP和PSO-GRDKP相比,PSO-GGRDKP算法的解误差率略高,但算法时间性能分别提升了13.8%、12.9%。展开更多
The advancements of mobile devices, public networks and the Internet of creature huge amounts of complex data, both construct & unstructured are being captured in trust to allow organizations to produce better bus...The advancements of mobile devices, public networks and the Internet of creature huge amounts of complex data, both construct & unstructured are being captured in trust to allow organizations to produce better business decisions as data is now pivotal for an organizations success. These enormous amounts of data are referred to as Big Data, which enables a competitive advantage over rivals when processed and analyzed appropriately. However Big Data Analytics has a few concerns including Management of Data, Privacy & Security, getting optimal path for transport data, and Data Representation. However, the structure of network does not completely match transportation demand, i.e., there still exist a few bottlenecks in the network. This paper presents a new approach to get the optimal path of valuable data movement through a given network based on the knapsack problem. This paper will give value for each piece of data, it depends on the importance of this data (each piece of data defined by two arguments size and value), and the approach tries to find the optimal path from source to destination, a mathematical models are developed to adjust data flows between their shortest paths based on the 0 - 1 knapsack problem. We also take out computational experience using the commercial software Gurobi and a greedy algorithm (GA), respectively. The outcome indicates that the suggest models are active and workable. This paper introduced two different algorithms to study the shortest path problems: the first algorithm studies the shortest path problems when stochastic activates and activities does not depend on weights. The second algorithm studies the shortest path problems depends on weights.展开更多
Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzz...Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzzy Entropy of Discrete Particle Swarm Optimization(IFDPSO) and makes it applied to Dynamic Weapon Target Assignment(WTA). First, the strategy of choosing intuitionistic fuzzy parameters of particle swarm is defined, making intuitionistic fuzzy entropy as a basic parameter for measure and velocity mutation. Second, through analyzing the defects of DPSO, an adjusting parameter for balancing two cognition, velocity mutation mechanism and position mutation strategy are designed, and then two sets of improved and derivative algorithms for IFDPSO are put forward, which ensures the IFDPSO possibly search as much as possible sub-optimal positions and its neighborhood and the algorithm ability of searching global optimal value in solving large scale 0-1 knapsack problem is intensified. Third, focusing on the problem of WTA, some parameters including dynamic parameter for shifting firepower and constraints are designed to solve the problems of weapon target assignment. In addition, WTA Optimization Model with time and resource constraints is finally set up, which also intensifies the algorithm ability of searching global and local best value in the solution of WTA problem. Finally, the superiority of IFDPSO is proved by several simulation experiments. Particularly, IFDPSO, IFDPSO1~IFDPSO3 are respectively effective in solving large scale, medium scale or strict constraint problems such as 0-1 knapsack problem and WTA problem.展开更多
In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF n...In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF neural network model, and then determine the searching area according to the trajectory. With the pass of time, the searching area will also be constantly moving along the trajectory. Model 2 develops a maritime search plan to achieve the purpose of completing the search in the shortest time. We optimize the searching time and transform the problem into the 0-1 knapsack problem. Solving this problem by improved genetic algorithm, we can get the shortest searching time and the best choice for the search power.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.10571116)
文摘In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems.
文摘Binary wolf pack algorithm (BWPA) is a kind of intelligence algorithm which can solve combination optimization problems in discrete spaces.Based on BWPA, an improved binary wolf pack algorithm (AIBWPA) can be proposed by adopting adaptive step length and improved update strategy of wolf pack. AIBWPA is applied to 10 classic 0-1 knapsack problems and compared with BWPA, DPSO, which proves that AIBWPA has higher optimization accuracy and better computational robustness. AIBWPA makes the parameters simple, protects the population diversity and enhances the global convergence.
文摘集值折扣{0-1}背包问题(Discounted{0-1}Knapsack Problem with Setup,D{0-1}KPS)指在同一类别中可选择多个项,每个类别对目标函数和约束条件都增加了额外的固定设置成本。提出一种求解D{0-1}KPS的改进动态规划算法,算法针对D{0-1}KPS问题本身结构特征,融合多目标优化问题中非支配解集思想,通过利用状态之间的支配与非支配关系,对每个阶段的状态集进行剪枝,形成非支配状态集,从而提出改进动态规划算法。通过实例验证了该算法的有效性和可行性。
文摘群智能启发式算法求解折扣{0-1}背包问题(D{0-1}KP)时,为提升求解效率和求解质量,需采用某种修复与优化策略将非正常编码个体转换为符合解约束条件的编码个体。在引入项集价值密度概念基础上,以粒子群算法(PSO)为例,提出一组基于项集的贪婪修复与优化方法(group greedy repair and optimization algorithm,GGROA),并进一步构造PSO-GGRDKP算法(PSO based GGROA for solving D{0-1}KP)以探究GGROA方法的可行性和性能。PSO-NGROADKP(PSO based NGROA for solving D{0-1}KP)和PSO-GRDKP(PSO based GROA for solving D{0-1}KP)是基于项贪心修复与优化方法的粒子群算法。在D{0-1}KP标准数据集的实验结果表明:与PSO-NGROADKP和PSO-GRDKP相比,PSO-GGRDKP算法的解误差率略高,但算法时间性能分别提升了13.8%、12.9%。
文摘The advancements of mobile devices, public networks and the Internet of creature huge amounts of complex data, both construct & unstructured are being captured in trust to allow organizations to produce better business decisions as data is now pivotal for an organizations success. These enormous amounts of data are referred to as Big Data, which enables a competitive advantage over rivals when processed and analyzed appropriately. However Big Data Analytics has a few concerns including Management of Data, Privacy & Security, getting optimal path for transport data, and Data Representation. However, the structure of network does not completely match transportation demand, i.e., there still exist a few bottlenecks in the network. This paper presents a new approach to get the optimal path of valuable data movement through a given network based on the knapsack problem. This paper will give value for each piece of data, it depends on the importance of this data (each piece of data defined by two arguments size and value), and the approach tries to find the optimal path from source to destination, a mathematical models are developed to adjust data flows between their shortest paths based on the 0 - 1 knapsack problem. We also take out computational experience using the commercial software Gurobi and a greedy algorithm (GA), respectively. The outcome indicates that the suggest models are active and workable. This paper introduced two different algorithms to study the shortest path problems: the first algorithm studies the shortest path problems when stochastic activates and activities does not depend on weights. The second algorithm studies the shortest path problems depends on weights.
基金supported by The National Natural Science Foundation of China under Grant Nos.61402517, 61573375The Foundation of State Key Laboratory of Astronautic Dynamics of China under Grant No. 2016ADL-DW0302+2 种基金The Postdoctoral Science Foundation of China under Grant Nos. 2013M542331, 2015M572778The Natural Science Foundation of Shaanxi Province of China under Grant No. 2013JQ8035The Aviation Science Foundation of China under Grant No. 20151996015
文摘Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzzy Entropy of Discrete Particle Swarm Optimization(IFDPSO) and makes it applied to Dynamic Weapon Target Assignment(WTA). First, the strategy of choosing intuitionistic fuzzy parameters of particle swarm is defined, making intuitionistic fuzzy entropy as a basic parameter for measure and velocity mutation. Second, through analyzing the defects of DPSO, an adjusting parameter for balancing two cognition, velocity mutation mechanism and position mutation strategy are designed, and then two sets of improved and derivative algorithms for IFDPSO are put forward, which ensures the IFDPSO possibly search as much as possible sub-optimal positions and its neighborhood and the algorithm ability of searching global optimal value in solving large scale 0-1 knapsack problem is intensified. Third, focusing on the problem of WTA, some parameters including dynamic parameter for shifting firepower and constraints are designed to solve the problems of weapon target assignment. In addition, WTA Optimization Model with time and resource constraints is finally set up, which also intensifies the algorithm ability of searching global and local best value in the solution of WTA problem. Finally, the superiority of IFDPSO is proved by several simulation experiments. Particularly, IFDPSO, IFDPSO1~IFDPSO3 are respectively effective in solving large scale, medium scale or strict constraint problems such as 0-1 knapsack problem and WTA problem.
文摘In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF neural network model, and then determine the searching area according to the trajectory. With the pass of time, the searching area will also be constantly moving along the trajectory. Model 2 develops a maritime search plan to achieve the purpose of completing the search in the shortest time. We optimize the searching time and transform the problem into the 0-1 knapsack problem. Solving this problem by improved genetic algorithm, we can get the shortest searching time and the best choice for the search power.