The discrete ordinates(S N)method requires numerous angular unknowns to achieve the desired accu-racy for shielding calculations involving strong anisotropy.Our objective is to develop an angular adaptive algorithm in...The discrete ordinates(S N)method requires numerous angular unknowns to achieve the desired accu-racy for shielding calculations involving strong anisotropy.Our objective is to develop an angular adaptive algorithm in the S N method to automatically optimize the angular distribution and minimize angular discretization errors with lower expenses.The proposed method enables linear dis-continuous finite element quadrature sets over an icosahe-dron to vary their quadrature orders in a one-twentieth sphere so that fine resolutions can be applied to the angular domains that are important.An error estimation that operates in conjunction with the spherical harmonics method is developed to determine the locations where more refinement is required.The adaptive quadrature sets are applied to three duct problems,including the Kobayashi benchmarks and the IRI-TUB research reactor,which emphasize the ability of this method to resolve neutron streaming through ducts with voids.The results indicate that the performance of the adaptive method is more effi-cient than that of uniform quadrature sets for duct transport problems.Our adaptive method offers an appropriate placement of angular unknowns to accurately integrate angular fluxes while reducing the computational costs in terms of unknowns and run times.展开更多
The China dual-functional lithium–lead test blanket module(DFLL-TBM) is a liquid Li Pb blanket concept developed by the Institute of Nuclear Energy Safety Technology of the Chinese Academy of Sciences for testing in ...The China dual-functional lithium–lead test blanket module(DFLL-TBM) is a liquid Li Pb blanket concept developed by the Institute of Nuclear Energy Safety Technology of the Chinese Academy of Sciences for testing in ITER to validate relevant tritium breeding and shielding technologies. In this study, neutronic calculations of DFLL-TBM were carried out using a massively parallel three-dimensional transport code, Hydra, with the Fusion Evaluated Nuclear Data Library/MG. Hydra was developed by the Nuclear Engineering Computational Physics Lab based on the discrete ordinates method and has been devoted to neutronic analysis and shielding evaluation for nuclear facilities. An in-house Monte Carlo code(MCX) was employed to verify the discretized calculation model used by Hydra for the DFLL-TBM calculations. The results showed two key aspects:(1) In most material zones,Hydra solutions are in good agreement with the reference MCX results within 1%, and the maximal relative difference of the neutron flux is merely 3%, demonstrating the correctness of the calculation model;(2) while the current DFLL-TBM design meets the operation shielding requirement of ITER for 4 years, it does not satisfy the tritium self-sufficiency requirement. Compared to the two-step approach, Hydra produces higher accuracies as it does not rely on the homogenization technique during the calculation process. The parallel efficiency tests of Hydra using the DFLL-TBM model also showed that this code maintains a high parallel efficiency on O(100) processors and, as a result, is able to significantly improve computing performance through parallelization. Parameter studies have been carried out by varying the thickness of the beryllium armor layer and the tritium breeding zone to understand the influence of the beryllium layer and breeding zone thickness on tritium breeding performance. This establishes a foundation for further improvement in the tritium production performance of DFLL-TBM.展开更多
三维全堆芯pin-by-pin中子输运模型的高效加速方法是核反应堆高精度计算的重点和难点。本文有效融合课题组开发的并行多维离散纵坐标(S_(N))中子输运程序comeSn和Jacobian-Free Newton Krylov(JFNK)通用求解框架comeJFNK的高效并行特性...三维全堆芯pin-by-pin中子输运模型的高效加速方法是核反应堆高精度计算的重点和难点。本文有效融合课题组开发的并行多维离散纵坐标(S_(N))中子输运程序comeSn和Jacobian-Free Newton Krylov(JFNK)通用求解框架comeJFNK的高效并行特性、鲁棒性和强收敛性,开发了一套三维稳态及瞬态中子输运模型的JFNK并行求解程序comeSn_JFNK。为了提高计算效率,选择中子标通量密度(而非中子角通量密度)作为JFNK全局求解变量,并利用基于空间区域并行的KBA输运扫描方法和物理预处理方法,分别构建了稳态及瞬态模型的JFNK统一残差计算模型。计算结果表明,comeSn_JFNK相比于comeSn,计算效率具有显著优势,对于三维pin-by-pin稳态KAIST-3A算例,加速比为10倍以上;对于栅元均匀化的二维七群瞬态C5G7-TD2系列基准算例,加速比约为30倍。展开更多
Criticality problem of nuclear tractors generMly refers to an eigenvalue problem for the transport equations. In this paper, we deal with the eigenvalue of the anisotropic scattering transport equation in slab geometr...Criticality problem of nuclear tractors generMly refers to an eigenvalue problem for the transport equations. In this paper, we deal with the eigenvalue of the anisotropic scattering transport equation in slab geometry. We propose a new discrete method which was called modified discrete ordinates method. It is constructed by redeveloping and improving discrete ordinates method in the space of L1(X). Different from traditional methods, norm convergence of operator approximation is proved theoretically. Furthermore, convergence of eigenvalue approximation and the corresponding error estimation are obtained by analytical tools.展开更多
The problems in some previous discrete ordinate method computations of radiative transfer are discussed, and a new manipulation is presented, which overcomes the difficulties in intensity calculations with the discret...The problems in some previous discrete ordinate method computations of radiative transfer are discussed, and a new manipulation is presented, which overcomes the difficulties in intensity calculations with the discrete ordinate method, and can be used to obtain accurate intensities with less streams. Even in strongly anisotropically scattering atmospheres the intensities in all directions including forward and backward directions of the direct radiation can be obtained satisfactorily.展开更多
基金supported by the National Natural Science Foundation of China(No.11975097)the Fundamental Research Funds for the Central Universities(No.2019MS038).
文摘The discrete ordinates(S N)method requires numerous angular unknowns to achieve the desired accu-racy for shielding calculations involving strong anisotropy.Our objective is to develop an angular adaptive algorithm in the S N method to automatically optimize the angular distribution and minimize angular discretization errors with lower expenses.The proposed method enables linear dis-continuous finite element quadrature sets over an icosahe-dron to vary their quadrature orders in a one-twentieth sphere so that fine resolutions can be applied to the angular domains that are important.An error estimation that operates in conjunction with the spherical harmonics method is developed to determine the locations where more refinement is required.The adaptive quadrature sets are applied to three duct problems,including the Kobayashi benchmarks and the IRI-TUB research reactor,which emphasize the ability of this method to resolve neutron streaming through ducts with voids.The results indicate that the performance of the adaptive method is more effi-cient than that of uniform quadrature sets for duct transport problems.Our adaptive method offers an appropriate placement of angular unknowns to accurately integrate angular fluxes while reducing the computational costs in terms of unknowns and run times.
基金the National Key Research and Development Program of China(Nos.2018YFB0204301,2017YFB0202104,and 2017YFE0302200)。
文摘The China dual-functional lithium–lead test blanket module(DFLL-TBM) is a liquid Li Pb blanket concept developed by the Institute of Nuclear Energy Safety Technology of the Chinese Academy of Sciences for testing in ITER to validate relevant tritium breeding and shielding technologies. In this study, neutronic calculations of DFLL-TBM were carried out using a massively parallel three-dimensional transport code, Hydra, with the Fusion Evaluated Nuclear Data Library/MG. Hydra was developed by the Nuclear Engineering Computational Physics Lab based on the discrete ordinates method and has been devoted to neutronic analysis and shielding evaluation for nuclear facilities. An in-house Monte Carlo code(MCX) was employed to verify the discretized calculation model used by Hydra for the DFLL-TBM calculations. The results showed two key aspects:(1) In most material zones,Hydra solutions are in good agreement with the reference MCX results within 1%, and the maximal relative difference of the neutron flux is merely 3%, demonstrating the correctness of the calculation model;(2) while the current DFLL-TBM design meets the operation shielding requirement of ITER for 4 years, it does not satisfy the tritium self-sufficiency requirement. Compared to the two-step approach, Hydra produces higher accuracies as it does not rely on the homogenization technique during the calculation process. The parallel efficiency tests of Hydra using the DFLL-TBM model also showed that this code maintains a high parallel efficiency on O(100) processors and, as a result, is able to significantly improve computing performance through parallelization. Parameter studies have been carried out by varying the thickness of the beryllium armor layer and the tritium breeding zone to understand the influence of the beryllium layer and breeding zone thickness on tritium breeding performance. This establishes a foundation for further improvement in the tritium production performance of DFLL-TBM.
文摘三维全堆芯pin-by-pin中子输运模型的高效加速方法是核反应堆高精度计算的重点和难点。本文有效融合课题组开发的并行多维离散纵坐标(S_(N))中子输运程序comeSn和Jacobian-Free Newton Krylov(JFNK)通用求解框架comeJFNK的高效并行特性、鲁棒性和强收敛性,开发了一套三维稳态及瞬态中子输运模型的JFNK并行求解程序comeSn_JFNK。为了提高计算效率,选择中子标通量密度(而非中子角通量密度)作为JFNK全局求解变量,并利用基于空间区域并行的KBA输运扫描方法和物理预处理方法,分别构建了稳态及瞬态模型的JFNK统一残差计算模型。计算结果表明,comeSn_JFNK相比于comeSn,计算效率具有显著优势,对于三维pin-by-pin稳态KAIST-3A算例,加速比为10倍以上;对于栅元均匀化的二维七群瞬态C5G7-TD2系列基准算例,加速比约为30倍。
基金Supported by National Natural Science Foundation of China(Grant No.11201007)
文摘Criticality problem of nuclear tractors generMly refers to an eigenvalue problem for the transport equations. In this paper, we deal with the eigenvalue of the anisotropic scattering transport equation in slab geometry. We propose a new discrete method which was called modified discrete ordinates method. It is constructed by redeveloping and improving discrete ordinates method in the space of L1(X). Different from traditional methods, norm convergence of operator approximation is proved theoretically. Furthermore, convergence of eigenvalue approximation and the corresponding error estimation are obtained by analytical tools.
文摘The problems in some previous discrete ordinate method computations of radiative transfer are discussed, and a new manipulation is presented, which overcomes the difficulties in intensity calculations with the discrete ordinate method, and can be used to obtain accurate intensities with less streams. Even in strongly anisotropically scattering atmospheres the intensities in all directions including forward and backward directions of the direct radiation can be obtained satisfactorily.