期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A discrete element model for simulating saturated granular soil 被引量:5
1
作者 Ali Asghar Mirghasemi 《Particuology》 SCIE EI CAS CSCD 2011年第6期650-658,共9页
A numerical model is developed to simulate saturated granular soil, based on the discrete element method. Soil particles are represented by Lagrangian discrete elements, and pore fluid, by appropriate discrete element... A numerical model is developed to simulate saturated granular soil, based on the discrete element method. Soil particles are represented by Lagrangian discrete elements, and pore fluid, by appropriate discrete elements which represent alternately Lagrangian mass of water and Eulerian volume of space. Macroscale behavior of the model is verified by simulating undrained biaxial compression tests. Micro-scale behavior is compared to previous literature through pore pressure pattern visualization during shear tests. It is demonstrated that dynamic pore pressure patterns are generated by superposed stress waves. These pore-pressure patterns travel much faster than average drainage rate of the pore fluid and may initiate soil fabric change, ultimately leading to liquefaction in loose sands. Thus, this work demonstrates a tool to roughly link dvnamic stress wave patterns to initiation of liQuefaction nhenomena. 展开更多
关键词 discrete element method Granular soil Saturated soil Pore pressure
原文传递
Effect of rolling friction on wall pressure,discharge velocity and outflow of granular material from a flat-bottomed bin 被引量:6
2
作者 R.Baleviius I.Sielamowicz +1 位作者 Z.Mróz R.Kaianauskas 《Particuology》 SCIE EI CAS CSCD 2012年第6期672-682,共11页
The present paper provides both experimental and DEM analyses of the filling and discharge of pea grains from a 3D flat-bottomed bin. In the DEM model, the fixed mean values of the experimentally determined single par... The present paper provides both experimental and DEM analyses of the filling and discharge of pea grains from a 3D flat-bottomed bin. In the DEM model, the fixed mean values of the experimentally determined single particle data, such as the particle density, Young's modulus, Poisson's ratio as well as the sliding and rolling friction coefficients were incorporated to analyse their effects on the macroscale indicators, such as the wall pressure, discharge velocities and material outflow parameters. The effect of rolling friction was studied based on the experimentally measured single particle rolling friction coefficient. This analysis is aimed at the quantitative prediction of flow parameters as related to the identification of material parameters. 展开更多
关键词 Visco-elastic granular materia discrete element method Rolling friction Wall pressure Material velocityOutflow mass Outflow rateBiosystems Pea grains
原文传递
Analysis of gas-solid flow and shaft-injected gas distribution in an oxygen blast furnace using a discrete element method and computational fluid dynamics coupled model 被引量:3
3
作者 Zeshang Dong Jingsong Wang +2 位作者 Haibin Zuo Xuefeng She Qingguo Xue 《Particuology》 SCIE EI CAS CSCD 2017年第3期63-72,共10页
lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace b... lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace by coupling the discrete element method with computational fluid dynamics. The model reliability was verified by previous experimental results. The influences of particle diameter, shaft tuyere size, and specific ratio (X) of shaft-injected gas (51G) flowrate to total gas flowrate on the SIC penetration behavior and pressure field in the furnace were investigated. The results showed that gas penetration capacity in the furnace gradually decreased as the particle diameter decreased from 100 to 40 mm. Decreasing particle diameter and increasing shaft tuyere size both slightly increased the SIG concentration near the furnace wall but decreased it at the furnace center. The value of X has a significant impact on the SIG distribution. According to the pressure fields obtained under different conditions, the key factor affecting SIG penetration depth is the pressure difference between the upper and lower levels of the shaft tuyere. If the pressure difference is small, the SIG can easily penetrate to the furnace center. 展开更多
关键词 Oxygen blast furnace discrete element method Computational fluid dynamics Shaft gas injection Gas-solid flow pressure field
原文传递
Particle shape consideration in numerical simulation of assemblies of irregularly shaped particles 被引量:9
4
作者 Saba Abedi Ali Asghar Mirghasemi 《Particuology》 SCIE EI CAS CSCD 2011年第4期387-397,共11页
The mechanical behavior of granular materials depends much on the shape of the constituent particles. Therefore appropriate modeling of particle, or grain, shape is quite important. This study employed the method of d... The mechanical behavior of granular materials depends much on the shape of the constituent particles. Therefore appropriate modeling of particle, or grain, shape is quite important. This study employed the method of direct modeling of grain shape (Matsushima & Saomto, 2002), in which, the real shape of a grain is modeled by combining arbitrary number of overlapping circular elements which are connected to each other in a rigid way. Then, accordingly, a discrete-element program is used to simulate the assembly of grains. In order to measure the effects of grain shape on mechanical properties of assembly of grains, three types of grains-high angular grains, medium angular grains and round grains are considered where several biaxial tests are conducted on assemblies with different grain types, The results show that the angularity of grains greatly affects the behavior of granular soil. 展开更多
关键词 discrete element method Granular soil Angularity Confining pressure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部