Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ...Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.展开更多
This paper improves the iterative learning control algo-rithm for nonlinear discrete-time dynamic systemswhich proposed by D.-H.Hwang et.al.,and make itpossible to use in the system which can give output erroronly.The...This paper improves the iterative learning control algo-rithm for nonlinear discrete-time dynamic systemswhich proposed by D.-H.Hwang et.al.,and make itpossible to use in the system which can give output erroronly.Then a sufficient condition for asymptotical conve-rgence of iterative learning algorithm is proposed.Thealgotithm can be used to a class of nonlinear systems withunknown but periodic parameters.展开更多
A novel output-feedback adaptive learning control approach is developed for a class of linear time-delay systems. Three kinds of uncertainties: time delays, number of time delays, and system parameters are all assume...A novel output-feedback adaptive learning control approach is developed for a class of linear time-delay systems. Three kinds of uncertainties: time delays, number of time delays, and system parameters are all assumed to be completely unknown, which is dfferent from the previous work. The design procedure includes two steps. First, according to the given periodic desired reference output and the allowed bound of tracking error, a suitable finite Fourier series expansion (FSE) is chosen as a practical reference output to be tracked. Second, by expressing the delayed practical reference output as a known time-varying vector multiplied by an unknown constant vector, we combine three kinds of uncertainties into an unknown constant vector and then estimate the vector by designing an adaptive law. By constructing a Lyapunov-Krasovskii functional, it is proved that the system output can asymptotically track the practical reference signal. An example is provided to illustrate the effectiveness of the control scheme developed in this paper.展开更多
In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the...In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the variation of desired trajectories in the iteration domain. In the sequel, the HOIM is incorporated into the design of learning gains. The learning convergence in the iteration axis can be guaranteed with rigorous proof. The simulation results with permanent magnet linear motors(PMLM) demonstrate that the proposed HOIM based approach yields good performance and achieves perfect tracking.展开更多
In this paper an adaptive iterative learning control scheme is presented for the output tracking of a class of nonlinear systems. An observer is designed to estimate the tracking errors. A mixed time domain and s-doma...In this paper an adaptive iterative learning control scheme is presented for the output tracking of a class of nonlinear systems. An observer is designed to estimate the tracking errors. A mixed time domain and s-domain representation is constructed to derive an error model with relative degree one for our purpose. And time-varying radial basis function neural network is employed to deal with system uncertainty. A new signal is constructed by using a first-order filter, which removes the requirement of strict positive real(SPR) condition and identical initial condition of iterative learning control. Based on property of hyperbolic tangent function,the system tracing error is proved to converge to the origin as the iteration tends to infinity by constructing Lyapunov-like composite energy function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.展开更多
This paper presents a novel design method for discrete-time repetitive control systems (RCS) based on two-dimensional (2D) discrete-time model. Firstly, the 2D model of an RCS is established by considering both th...This paper presents a novel design method for discrete-time repetitive control systems (RCS) based on two-dimensional (2D) discrete-time model. Firstly, the 2D model of an RCS is established by considering both the control action and the learning action in RCS. Then, through constructing a 2D state feedback controller, the design problem of the RCS is converted to the design problem of a 2D system. Then, using 2D system theory and linear matrix inequality (LMI) method, stability criterion is derived for the system without and with uncertainties, respectively. Parameters of the system can be determined by solving the LMI of the stability criterion. Finally, numerical simulations validate the effectiveness of the proposed method.展开更多
A novel model, termed the standard neural network model (SNNM), is advanced to describe some delayed (or non-delayed) discrete-time intelligent systems composed of neural networks and Takagi and Sugeno (T-S) fuz...A novel model, termed the standard neural network model (SNNM), is advanced to describe some delayed (or non-delayed) discrete-time intelligent systems composed of neural networks and Takagi and Sugeno (T-S) fuzzy models. The SNNM is composed of a discrete-time linear dynamic system and a bounded static nonlinear operator. Based on the global asymptotic stability analysis of the SNNMs, linear and nonlinear dynamic output feedback controllers are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based (or fuzzy) discrete-time intelligent systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Three application examples show that the SNNMs not only make controller synthesis of neural-network-based (or fuzzy) discrete-time intelligent systems much easier, but also provide a new approach to the synthesis of the controllers for the other type of nonlinear systems.展开更多
For flight control systems with time-varying delay, an H∞ output tracking controller is proposed. The controller is designed for the discrete-time state-space model of general aircraft to reduce the effects of uncert...For flight control systems with time-varying delay, an H∞ output tracking controller is proposed. The controller is designed for the discrete-time state-space model of general aircraft to reduce the effects of uncertainties of the mathematical model, external disturbances, and bounded time-varying delay. It is assumed that the feedback-control loop is closed by the communication network, and the network-based control architecture induces time-delays in the feedback information. Suppose that the time delay has both an upper bound and a lower bound. By using the Lyapu- nov-Krasovskii function and the linear matrix inequality (LMI), the delay-dependent stability criterion is derived for the time-delay system. Based on the criterion, a state-feedback H∞ output tracking controller for systems with norm-bounded uncertainties and time-varying delay is presented. The control scheme is applied to the high incidence research model (HIRM), which shows the effectiveness of the proposed approach.展开更多
基金supported by the National Natural Science Foundation of China(U21A20166)in part by the Science and Technology Development Foundation of Jilin Province (20230508095RC)+1 种基金in part by the Development and Reform Commission Foundation of Jilin Province (2023C034-3)in part by the Exploration Foundation of State Key Laboratory of Automotive Simulation and Control。
文摘Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.
文摘This paper improves the iterative learning control algo-rithm for nonlinear discrete-time dynamic systemswhich proposed by D.-H.Hwang et.al.,and make itpossible to use in the system which can give output erroronly.Then a sufficient condition for asymptotical conve-rgence of iterative learning algorithm is proposed.Thealgotithm can be used to a class of nonlinear systems withunknown but periodic parameters.
基金supported by National Natural Science Foundationof China (No. 60804021)
文摘A novel output-feedback adaptive learning control approach is developed for a class of linear time-delay systems. Three kinds of uncertainties: time delays, number of time delays, and system parameters are all assumed to be completely unknown, which is dfferent from the previous work. The design procedure includes two steps. First, according to the given periodic desired reference output and the allowed bound of tracking error, a suitable finite Fourier series expansion (FSE) is chosen as a practical reference output to be tracked. Second, by expressing the delayed practical reference output as a known time-varying vector multiplied by an unknown constant vector, we combine three kinds of uncertainties into an unknown constant vector and then estimate the vector by designing an adaptive law. By constructing a Lyapunov-Krasovskii functional, it is proved that the system output can asymptotically track the practical reference signal. An example is provided to illustrate the effectiveness of the control scheme developed in this paper.
基金supported by National Basic Research Program of China(973 Program)(No.2012CB316400)National Natural Science Foundation of China(Nos.61171034 and 61273134)
文摘In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the variation of desired trajectories in the iteration domain. In the sequel, the HOIM is incorporated into the design of learning gains. The learning convergence in the iteration axis can be guaranteed with rigorous proof. The simulation results with permanent magnet linear motors(PMLM) demonstrate that the proposed HOIM based approach yields good performance and achieves perfect tracking.
基金the National Natural Science Foundation of China(No.61273058)
文摘In this paper an adaptive iterative learning control scheme is presented for the output tracking of a class of nonlinear systems. An observer is designed to estimate the tracking errors. A mixed time domain and s-domain representation is constructed to derive an error model with relative degree one for our purpose. And time-varying radial basis function neural network is employed to deal with system uncertainty. A new signal is constructed by using a first-order filter, which removes the requirement of strict positive real(SPR) condition and identical initial condition of iterative learning control. Based on property of hyperbolic tangent function,the system tracing error is proved to converge to the origin as the iteration tends to infinity by constructing Lyapunov-like composite energy function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.
基金supported by National Natural Science Foundation of China (Nos. 60974045 and 60674016)the Research Foundation of Education Bureau of Hunan Province, China (No. 08C090)
文摘This paper presents a novel design method for discrete-time repetitive control systems (RCS) based on two-dimensional (2D) discrete-time model. Firstly, the 2D model of an RCS is established by considering both the control action and the learning action in RCS. Then, through constructing a 2D state feedback controller, the design problem of the RCS is converted to the design problem of a 2D system. Then, using 2D system theory and linear matrix inequality (LMI) method, stability criterion is derived for the system without and with uncertainties, respectively. Parameters of the system can be determined by solving the LMI of the stability criterion. Finally, numerical simulations validate the effectiveness of the proposed method.
基金the National Natural Science Foundation of China (Grant No. 60504024)the Zhejiang Provincial Natural Science Foundation of China (Grant No. Y106010)the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP), China (Grant No. 20060335022)
文摘A novel model, termed the standard neural network model (SNNM), is advanced to describe some delayed (or non-delayed) discrete-time intelligent systems composed of neural networks and Takagi and Sugeno (T-S) fuzzy models. The SNNM is composed of a discrete-time linear dynamic system and a bounded static nonlinear operator. Based on the global asymptotic stability analysis of the SNNMs, linear and nonlinear dynamic output feedback controllers are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based (or fuzzy) discrete-time intelligent systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Three application examples show that the SNNMs not only make controller synthesis of neural-network-based (or fuzzy) discrete-time intelligent systems much easier, but also provide a new approach to the synthesis of the controllers for the other type of nonlinear systems.
基金supported by the National Natural Science Foundation of China (Nos:61074027 and 61273083)
文摘For flight control systems with time-varying delay, an H∞ output tracking controller is proposed. The controller is designed for the discrete-time state-space model of general aircraft to reduce the effects of uncertainties of the mathematical model, external disturbances, and bounded time-varying delay. It is assumed that the feedback-control loop is closed by the communication network, and the network-based control architecture induces time-delays in the feedback information. Suppose that the time delay has both an upper bound and a lower bound. By using the Lyapu- nov-Krasovskii function and the linear matrix inequality (LMI), the delay-dependent stability criterion is derived for the time-delay system. Based on the criterion, a state-feedback H∞ output tracking controller for systems with norm-bounded uncertainties and time-varying delay is presented. The control scheme is applied to the high incidence research model (HIRM), which shows the effectiveness of the proposed approach.