One of the first attempts to derive energy-to-peak performance criteria and state-feedback controller design problem for linear parameter-varying discrete time systems with time delay is provided. Firstly, we present ...One of the first attempts to derive energy-to-peak performance criteria and state-feedback controller design problem for linear parameter-varying discrete time systems with time delay is provided. Firstly, we present a parameter-dependent l 2-l ∞ performance criterion using a parameter-dependent Lyapunov function. Upon the conditions addressed, an improved parameter-dependent l 2-l ∞ performance criterion is established by the introduction of a slack variable, which exhibits a kind of decoupling between Lyapunov functions and system matrices. This kind of decoupling enables us to obtain more easily tractable conditions for analysis and synthesis problems. Then, the corresponding parameter-dependent state-feedback controller design is investigated upon these performance criteria, with sufficient conditions obtained for the existence of admissible controllers in terms of parameterized linear matrix inequalities. Finally, a numerical example is provided to illustrate the feasibility and advantage of the proposed controller design procedure.展开更多
This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear syst...This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear systems are expanded in the space spanned by DPOFs,and two recurrence formulas for the expansion coefficients of the system’s state variables are obtained.Then,a modified Arnoldi process is applied to both recurrence formulas to construct the orthogonal projection matrices,by which the reduced-order systems are obtained.Theoretical analysis shows that the output variables of the reducedorder systems can match a certain number of the expansion coefficients of the original system’s output variables.Finally,two numerical examples illustrate the feasibility and effectiveness of the proposed methods.展开更多
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ...Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.展开更多
In this correspondence paper, an equivalent stability criterion with minimal number of linear matrix inequality (LMI) variables is presented for a delay-dependent stability criterion reported recently in the Interna...In this correspondence paper, an equivalent stability criterion with minimal number of linear matrix inequality (LMI) variables is presented for a delay-dependent stability criterion reported recently in the International Journal of Automation and Computing for a class of linear discrete-time systems with additive time delays. The reported stability criterion for the additive timedelay systems has more number of matrix variables in the LMI and, hence, demand additional computational burden. The proposed equivalent stability criterion, unlike the reported one, does not involve free-weighing matrices and encompass only the matrix variables that are associated in the Lyapunov-Krasovskii functional, making the criterion mathematically less complex and computationally more effective.展开更多
The memory state feedback control problem for a class of discrete-time systems with input delay and unknown state delay is addressed based on LMIs and Lyapunov-Krasovskii functional method. Under the action of our des...The memory state feedback control problem for a class of discrete-time systems with input delay and unknown state delay is addressed based on LMIs and Lyapunov-Krasovskii functional method. Under the action of our designed adaptive control law, the unknown time-delay parameter is included in memory state feedback controller. Using LMI technique, delay-dependent sufficient conditions for the existence of the feedback controller are obtained. Finally, the effectiveness of the proposed design method is demonstrated by a numerical example.展开更多
Based on Lyapunov stability theory, a less conservative sufficient condilions for the stabih'lies of uncertain discrete delayindependent and delay-dependent control systems are obtained by using the linear matrix ine...Based on Lyapunov stability theory, a less conservative sufficient condilions for the stabih'lies of uncertain discrete delayindependent and delay-dependent control systems are obtained by using the linear matrix inequality (LMI) approach. Judgement of the stability of time-delay systems is transformed to judgement of the feasible solution of an LMI, and hence is solved by use of MATLAB. Numerical simulations verify the validity of the proposed method.展开更多
The problems of robust stability and robust stability with a guaranteeing cost for discrete time-delay systems with nonlinear perturbation are discussed. A sufficient criterion for robust stability is established in a...The problems of robust stability and robust stability with a guaranteeing cost for discrete time-delay systems with nonlinear perturbation are discussed. A sufficient criterion for robust stability is established in an LMI framework and a linear convex optimization problem with LMI constraints for computing maximal perturbation bound is proposed. Meanwhile, a sufficient criterion for robust stability with a guaranteeing cost for such systems is obtained, and an optimal procedure for decreasing the value of guaranteeing cost is put forward. Two examples are used to illustrate the efficiency of the results.展开更多
This paper investigates the fixed-point smoothing problems for linear discrete-time systems with multiple time-delays in the observations. The linear discrete-time systems considered have 1 + 1 output channels. One i...This paper investigates the fixed-point smoothing problems for linear discrete-time systems with multiple time-delays in the observations. The linear discrete-time systems considered have 1 + 1 output channels. One is instanta- neous observation and the others are delayed. The fixed-point smoothers involving recursive algorithm and non-recursive algorithm are designed by using innovation analysis theory without relying on the system augmentation approach. Also, it is further shown that the design of fixed-point smoother comes down to solving 1 + 1 Riccati equations with the same dimensions as the original systems.展开更多
This paper establishes two theorems for two time-delayed (chaotic) discrete systems to achieve timedelayed generalized synchronization (TDGS). These two theorems uncover the genera/forms of two TDGS systems via a ...This paper establishes two theorems for two time-delayed (chaotic) discrete systems to achieve timedelayed generalized synchronization (TDGS). These two theorems uncover the genera/forms of two TDGS systems via a prescribed transformation. As examples, we convert the Lorenz three-dimensional chaotic map to an equal time-delayed system as the driving system, and construct the TDGS driven systems according to the Theorems 1 and 2. Numerical simulations demonstrate the effectiveness of the proposed theorems.展开更多
Necessary conditions for the exponential stability of the linear discrete time-delay systems are presented by employing the so-called Lyapunov–Krasovskii functional approach.These conditions not only provide a new to...Necessary conditions for the exponential stability of the linear discrete time-delay systems are presented by employing the so-called Lyapunov–Krasovskii functional approach.These conditions not only provide a new tool for stability analysis of the linear discrete timedelay system by characterising instability domains,but also extend the existing results of the linear discrete time-delay system.Simultaneously,we investigate several crucial properties that connect the Lyapunov matrix and the fundamental matrix of the system.Finally,the robust stability analysis of the linear discrete time-delay systems with norm-bounded uncertainties is presented.Numerical examples illustrate the validity of the obtained results.展开更多
In this paper, H ∞ state feedback control with delay information for discrete systems with multi-time-delay is discussed. Making use of linear matrix inequality (LMI) approach, a time-delay-dependent criterion for a ...In this paper, H ∞ state feedback control with delay information for discrete systems with multi-time-delay is discussed. Making use of linear matrix inequality (LMI) approach, a time-delay-dependent criterion for a discrete system with multi-time-delay to satisfy H ∞ performance indices is induced, and then a strategy for H ∞ state feedback control with delay values for plant with multi-time-delay is obtained. By solving corresponding LMI, a delay-dependent state feedback controller satisfying H ∞ performance indices is designed. Finally, a simulation example demonstrates the validity of the proposed approach. Keywords Multi-time-delay - discrete time system - LMI - delay-dependent - H ∞ control Bai-Da Qu received B. S. degree in electrical automation from Fuxin Mining Institute, China in 1982, M. Eng. degree from Hefei University of Polytechnology in 1990, and Ph.D from Northerneastern University in 1999. He was an electro-mechanical engineer at Erdaohezi Mine, Heilongjiang, China from 1982 to 1990, a Lecturer, Senior Engineer, Associate Professor and Professor in Shenyang Institue of Technology from 1990 to 2002. He is currently a professor in Communication and Control Engineering School, Southern Yangtze University. His research interests include control theory and applications (robust control, H ∞ control, time-delay systems, complex systems), system engineering (modeling, analysis and simulation, MIS,CMIS), power-electronics and electrical driving, signal detecting and process, industrial automation.展开更多
In this paper,the problem of guaranteed cost control for a class of uncertain discrete-time Markovian jump linear systems with mode-dependent time-delays and a given quadratic cost function are investigated. Attention...In this paper,the problem of guaranteed cost control for a class of uncertain discrete-time Markovian jump linear systems with mode-dependent time-delays and a given quadratic cost function are investigated. Attention is focused on designing a memoryless state feedback control law such that the closed-loop system is robust stochastically stable and the closed-loop cost function value is not more than a specified upper bound,for all admissible uncertainties. The key features of the approach include the introduction of a new type of suitable stochastic Lyapunov functional and free weighting matrices techniques. Sufficient conditions for the existence of such controller are obtained in terms of a set of linear matrix inequalities. A numerical example is given to illustrate the less conservatism of the proposed techniques.展开更多
The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensure...The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensures robust stochastic stability while achieving a prescribed H∞ performance level of the resulting filtering error system, for all admissible uncertainties. The key features of the approach include the introduction of a new type of stochastic Lyapunov functional and some free weighting matrix variables. Sufficient conditions for the solvability of this problem are obtained in terms of a set of linear matrix inequalities. Numerical examples are provided to demonstrate the reduced conservatism of the proposed approach.展开更多
Aim To study the optimal guaranteed cost control problem via static output feedback for uncertain linear discrete time systems with norm bounded parameter uncertainty in both the state and the control input matric...Aim To study the optimal guaranteed cost control problem via static output feedback for uncertain linear discrete time systems with norm bounded parameter uncertainty in both the state and the control input matrices of the state space model. Methods\ An upper bound on a quadratic cost index was found for all admissible parameter uncertainties and minimized by using Lagrange multiplier approach. Results and Conclusion\ Sufficient conditions are given for the existence of a controller guaranteeing the closed loop system quadratic stability and providing an optimized bound. A numerical algorithm for solving the output feedback gain is also presented.展开更多
The robust stability analysis of discrete time systems with fast time varying uncertainties is considered in this paper. The necessary and sufficient conditions for quadratic stability are presented. Moreover, the s...The robust stability analysis of discrete time systems with fast time varying uncertainties is considered in this paper. The necessary and sufficient conditions for quadratic stability are presented. Moreover, the stability robustness index is introduced as the measurement of the stability robustness. For the systems with given uncertain parameter bounds, checking the necessary and sufficient conditions and calculating the stability robust index are converted to solving minimax problems. It is shown that the maximization can be reduced to comparisons between the functional values of the corners when the parameter region is bounded by hyperpolydredon, and any local minimum value in the minimization is exactly the global minimum.展开更多
This paper presents a discrete vaxiational principle and a method to build first-integrals for finite dimensional Lagrange-Maxwell mechanico-electrical systems with nonconservative forces and a dissipation function. T...This paper presents a discrete vaxiational principle and a method to build first-integrals for finite dimensional Lagrange-Maxwell mechanico-electrical systems with nonconservative forces and a dissipation function. The discrete variational principle and the corresponding Euler-Lagrange equations are derived from a discrete action associated to these systems. The first-integrals are obtained by introducing the infinitesimal transformation with respect to the generalized coordinates and electric quantities of the systems. This work also extends discrete Noether symmetries to mechanico-electrical dynamical systems. A practical example is presented to illustrate the results.展开更多
The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for...The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.展开更多
This paper investigates the problem of delay-dependent robust stabilization for uncertain singular systems with discrete and distributed delays in terms of linear matrix inequality (LMI) approach. Based on a delay-d...This paper investigates the problem of delay-dependent robust stabilization for uncertain singular systems with discrete and distributed delays in terms of linear matrix inequality (LMI) approach. Based on a delay-dependent stability condition for the nominal system, a state feedback controller is designed, which guarantees the resultant closed- loop system to be robustly stable. An explicit expression for the desired controller is also given by solving a set of matrix inequalities. Some numerical examples are provided to illustrate the less conservativeness of the proposed methods.展开更多
文摘One of the first attempts to derive energy-to-peak performance criteria and state-feedback controller design problem for linear parameter-varying discrete time systems with time delay is provided. Firstly, we present a parameter-dependent l 2-l ∞ performance criterion using a parameter-dependent Lyapunov function. Upon the conditions addressed, an improved parameter-dependent l 2-l ∞ performance criterion is established by the introduction of a slack variable, which exhibits a kind of decoupling between Lyapunov functions and system matrices. This kind of decoupling enables us to obtain more easily tractable conditions for analysis and synthesis problems. Then, the corresponding parameter-dependent state-feedback controller design is investigated upon these performance criteria, with sufficient conditions obtained for the existence of admissible controllers in terms of parameterized linear matrix inequalities. Finally, a numerical example is provided to illustrate the feasibility and advantage of the proposed controller design procedure.
基金supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region of China“Research on model order reduction methods based on the discrete orthogonal polynomials”(2023D01C163)The Tianchi Talent Introduction Plan Project of Xinjiang Uygur Autonomous Region of China“Research on orthogonal decomposition model order reduction methods for discrete control systems”.
文摘This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear systems are expanded in the space spanned by DPOFs,and two recurrence formulas for the expansion coefficients of the system’s state variables are obtained.Then,a modified Arnoldi process is applied to both recurrence formulas to construct the orthogonal projection matrices,by which the reduced-order systems are obtained.Theoretical analysis shows that the output variables of the reducedorder systems can match a certain number of the expansion coefficients of the original system’s output variables.Finally,two numerical examples illustrate the feasibility and effectiveness of the proposed methods.
基金supported by the National Natural Science Foundation of China(U21A20166)in part by the Science and Technology Development Foundation of Jilin Province (20230508095RC)+1 种基金in part by the Development and Reform Commission Foundation of Jilin Province (2023C034-3)in part by the Exploration Foundation of State Key Laboratory of Automotive Simulation and Control。
文摘Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.
文摘In this correspondence paper, an equivalent stability criterion with minimal number of linear matrix inequality (LMI) variables is presented for a delay-dependent stability criterion reported recently in the International Journal of Automation and Computing for a class of linear discrete-time systems with additive time delays. The reported stability criterion for the additive timedelay systems has more number of matrix variables in the LMI and, hence, demand additional computational burden. The proposed equivalent stability criterion, unlike the reported one, does not involve free-weighing matrices and encompass only the matrix variables that are associated in the Lyapunov-Krasovskii functional, making the criterion mathematically less complex and computationally more effective.
基金supported by the National Natural Science Foundation of China (60574006 60804017+2 种基金 608350017)the Foundation of Doctor(20060286039)the Jiangsu Provincal Sustentation Fund of Recruiting Post Doctor(1660631171)
文摘The memory state feedback control problem for a class of discrete-time systems with input delay and unknown state delay is addressed based on LMIs and Lyapunov-Krasovskii functional method. Under the action of our designed adaptive control law, the unknown time-delay parameter is included in memory state feedback controller. Using LMI technique, delay-dependent sufficient conditions for the existence of the feedback controller are obtained. Finally, the effectiveness of the proposed design method is demonstrated by a numerical example.
文摘Based on Lyapunov stability theory, a less conservative sufficient condilions for the stabih'lies of uncertain discrete delayindependent and delay-dependent control systems are obtained by using the linear matrix inequality (LMI) approach. Judgement of the stability of time-delay systems is transformed to judgement of the feasible solution of an LMI, and hence is solved by use of MATLAB. Numerical simulations verify the validity of the proposed method.
基金This research is supported by the National Natural Science Foundation of China(Grant No. 60024301) Natural Science Fund of Shanxi Province, China(Grant No. 20051032).
文摘The problems of robust stability and robust stability with a guaranteeing cost for discrete time-delay systems with nonlinear perturbation are discussed. A sufficient criterion for robust stability is established in an LMI framework and a linear convex optimization problem with LMI constraints for computing maximal perturbation bound is proposed. Meanwhile, a sufficient criterion for robust stability with a guaranteeing cost for such systems is obtained, and an optimal procedure for decreasing the value of guaranteeing cost is put forward. Two examples are used to illustrate the efficiency of the results.
基金supported by the National Natural Science Foundation of China(Nos.61273124,61074038)the Nature Science Foundation of Shandong Province(No.Y2008G04)+3 种基金the China Postdoctoral Science Foundation(No.2011M501132)the Special Funds for Postdoctoral Innovative Projects of Shandong Province(No.201103043)the Doctoral Foundation of Taishan University(No.Y11-2-02)the Project of Shandong Province Higher Education Science and Technology Program(No.J12LN90)
文摘This paper investigates the fixed-point smoothing problems for linear discrete-time systems with multiple time-delays in the observations. The linear discrete-time systems considered have 1 + 1 output channels. One is instanta- neous observation and the others are delayed. The fixed-point smoothers involving recursive algorithm and non-recursive algorithm are designed by using innovation analysis theory without relying on the system augmentation approach. Also, it is further shown that the design of fixed-point smoother comes down to solving 1 + 1 Riccati equations with the same dimensions as the original systems.
基金Supported by the National Natural Science Foundation of China under Grant No. 60674059
文摘This paper establishes two theorems for two time-delayed (chaotic) discrete systems to achieve timedelayed generalized synchronization (TDGS). These two theorems uncover the genera/forms of two TDGS systems via a prescribed transformation. As examples, we convert the Lorenz three-dimensional chaotic map to an equal time-delayed system as the driving system, and construct the TDGS driven systems according to the Theorems 1 and 2. Numerical simulations demonstrate the effectiveness of the proposed theorems.
基金This work was partially supported by the National Natural Science Foundation of China(11371006 and 61703148)the Basic Research Operating Expenses Program of Colleges and Universities in Heilongjiang Province(HDJCCX-2016212 and RCCX201717)+1 种基金the Natural Science Foundation of Heilongjiang Province(QC2018083)the Heilongjiang University Innovation Fund for Graduates(YJSCX2018-057HLJU).
文摘Necessary conditions for the exponential stability of the linear discrete time-delay systems are presented by employing the so-called Lyapunov–Krasovskii functional approach.These conditions not only provide a new tool for stability analysis of the linear discrete timedelay system by characterising instability domains,but also extend the existing results of the linear discrete time-delay system.Simultaneously,we investigate several crucial properties that connect the Lyapunov matrix and the fundamental matrix of the system.Finally,the robust stability analysis of the linear discrete time-delay systems with norm-bounded uncertainties is presented.Numerical examples illustrate the validity of the obtained results.
文摘In this paper, H ∞ state feedback control with delay information for discrete systems with multi-time-delay is discussed. Making use of linear matrix inequality (LMI) approach, a time-delay-dependent criterion for a discrete system with multi-time-delay to satisfy H ∞ performance indices is induced, and then a strategy for H ∞ state feedback control with delay values for plant with multi-time-delay is obtained. By solving corresponding LMI, a delay-dependent state feedback controller satisfying H ∞ performance indices is designed. Finally, a simulation example demonstrates the validity of the proposed approach. Keywords Multi-time-delay - discrete time system - LMI - delay-dependent - H ∞ control Bai-Da Qu received B. S. degree in electrical automation from Fuxin Mining Institute, China in 1982, M. Eng. degree from Hefei University of Polytechnology in 1990, and Ph.D from Northerneastern University in 1999. He was an electro-mechanical engineer at Erdaohezi Mine, Heilongjiang, China from 1982 to 1990, a Lecturer, Senior Engineer, Associate Professor and Professor in Shenyang Institue of Technology from 1990 to 2002. He is currently a professor in Communication and Control Engineering School, Southern Yangtze University. His research interests include control theory and applications (robust control, H ∞ control, time-delay systems, complex systems), system engineering (modeling, analysis and simulation, MIS,CMIS), power-electronics and electrical driving, signal detecting and process, industrial automation.
基金Sponsored by the National Defense Basic Research Foundation of China (Grant No. 9140A17030207HT01)
文摘In this paper,the problem of guaranteed cost control for a class of uncertain discrete-time Markovian jump linear systems with mode-dependent time-delays and a given quadratic cost function are investigated. Attention is focused on designing a memoryless state feedback control law such that the closed-loop system is robust stochastically stable and the closed-loop cost function value is not more than a specified upper bound,for all admissible uncertainties. The key features of the approach include the introduction of a new type of suitable stochastic Lyapunov functional and free weighting matrices techniques. Sufficient conditions for the existence of such controller are obtained in terms of a set of linear matrix inequalities. A numerical example is given to illustrate the less conservatism of the proposed techniques.
文摘The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensures robust stochastic stability while achieving a prescribed H∞ performance level of the resulting filtering error system, for all admissible uncertainties. The key features of the approach include the introduction of a new type of stochastic Lyapunov functional and some free weighting matrix variables. Sufficient conditions for the solvability of this problem are obtained in terms of a set of linear matrix inequalities. Numerical examples are provided to demonstrate the reduced conservatism of the proposed approach.
文摘Aim To study the optimal guaranteed cost control problem via static output feedback for uncertain linear discrete time systems with norm bounded parameter uncertainty in both the state and the control input matrices of the state space model. Methods\ An upper bound on a quadratic cost index was found for all admissible parameter uncertainties and minimized by using Lagrange multiplier approach. Results and Conclusion\ Sufficient conditions are given for the existence of a controller guaranteeing the closed loop system quadratic stability and providing an optimized bound. A numerical algorithm for solving the output feedback gain is also presented.
文摘The robust stability analysis of discrete time systems with fast time varying uncertainties is considered in this paper. The necessary and sufficient conditions for quadratic stability are presented. Moreover, the stability robustness index is introduced as the measurement of the stability robustness. For the systems with given uncertain parameter bounds, checking the necessary and sufficient conditions and calculating the stability robust index are converted to solving minimax problems. It is shown that the maximization can be reduced to comparisons between the functional values of the corners when the parameter region is bounded by hyperpolydredon, and any local minimum value in the minimization is exactly the global minimum.
基金Project supported by State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant Nos 10672143 and 10471145) and the Natural Science Foundation of Henan Province Government, China (Grant Nos 0311011400 and 0511022200).
文摘This paper presents a discrete vaxiational principle and a method to build first-integrals for finite dimensional Lagrange-Maxwell mechanico-electrical systems with nonconservative forces and a dissipation function. The discrete variational principle and the corresponding Euler-Lagrange equations are derived from a discrete action associated to these systems. The first-integrals are obtained by introducing the infinitesimal transformation with respect to the generalized coordinates and electric quantities of the systems. This work also extends discrete Noether symmetries to mechanico-electrical dynamical systems. A practical example is presented to illustrate the results.
基金supported by Research Foundation of Education Bureau of Shannxi Province, PRC(No.2010JK400)
文摘The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.
基金the National Natural Science Foundation of China (No.60503027)
文摘This paper investigates the problem of delay-dependent robust stabilization for uncertain singular systems with discrete and distributed delays in terms of linear matrix inequality (LMI) approach. Based on a delay-dependent stability condition for the nominal system, a state feedback controller is designed, which guarantees the resultant closed- loop system to be robustly stable. An explicit expression for the desired controller is also given by solving a set of matrix inequalities. Some numerical examples are provided to illustrate the less conservativeness of the proposed methods.