In the previous papers I and II, we have studied the difference discrete variational principle and the Euler?Lagrange cohomology in the framework of multi-parameter differential approach. We have gotten the difference...In the previous papers I and II, we have studied the difference discrete variational principle and the Euler?Lagrange cohomology in the framework of multi-parameter differential approach. We have gotten the difference discrete Euler?Lagrange equations and canonical ones for the difference discrete versions of classical mechanics and field theory as well as the difference discrete versions for the Euler?Lagrange cohomology and applied them to get the necessary and sufficient condition for the symplectic or multisymplectic geometry preserving properties in both the Lagrangian and Hamiltonian formalisms. In this paper, we apply the difference discrete variational principle and Euler?Lagrange cohomological approach directly to the symplectic and multisymplectic algorithms. We will show that either Hamiltonian schemes or Lagrangian ones in both the symplectic and multisymplectic algorithms are variational integrators and their difference discrete symplectic structure-preserving properties can always be established not only in the solution space but also in the function space if and only if the related closed Euler?Lagrange cohomological conditions are satisfied.展开更多
In this second paper of a series of papers, we explore the difference discrete versions for the Euler?Lagrange cohomology and apply them to the symplectic or multisymplectic geometry and their preserving properties in...In this second paper of a series of papers, we explore the difference discrete versions for the Euler?Lagrange cohomology and apply them to the symplectic or multisymplectic geometry and their preserving properties in both the Lagrangian and Hamiltonian formalisms for discrete mechanics and field theory in the framework of multi-parameter differential approach. In terms of the difference discrete Euler?Lagrange cohomological concepts, we show that the symplectic or multisymplectic geometry and their difference discrete structure-preserving properties can always be established not only in the solution spaces of the discrete Euler?Lagrange or canonical equations derived by the difference discrete variational principle but also in the function space in each case if and only if the relevant closed Euler?Lagrange cohomological conditions are satisfied.展开更多
We present the symplectic algorithm in the Lagrangian formalism for the Hamiltonian systems by virtue of the noncommutative differential calculus with respect to the discrete time and the Euler-Lagrange cohomological ...We present the symplectic algorithm in the Lagrangian formalism for the Hamiltonian systems by virtue of the noncommutative differential calculus with respect to the discrete time and the Euler-Lagrange cohomological concepts. We also show that the trapezoidal integrator is symplectic in certain sense.展开更多
We introduce the Euler-Lagrange cohomology to study the symplectic and multisymplectic structures and their preserving properties in finite and infinite dimensional Lagrangian systems respectively. We also explore the...We introduce the Euler-Lagrange cohomology to study the symplectic and multisymplectic structures and their preserving properties in finite and infinite dimensional Lagrangian systems respectively. We also explore their certain difference discrete counterparts in the relevant regularly discretized finite and infinite dimensional Lagrangian systems by means of the difference discrete variational principle with the difference being regarded as an entire geometric object and the noncommutative differential calculus on regular lattice. In order to show that in all these cases the symplectic and multisymplectic preserving properties do not necessarily depend on the relevant Euler-Lagrange equations, the Euler-Lagrange cohomological concepts and content in the configuration space are employed.展开更多
文摘In the previous papers I and II, we have studied the difference discrete variational principle and the Euler?Lagrange cohomology in the framework of multi-parameter differential approach. We have gotten the difference discrete Euler?Lagrange equations and canonical ones for the difference discrete versions of classical mechanics and field theory as well as the difference discrete versions for the Euler?Lagrange cohomology and applied them to get the necessary and sufficient condition for the symplectic or multisymplectic geometry preserving properties in both the Lagrangian and Hamiltonian formalisms. In this paper, we apply the difference discrete variational principle and Euler?Lagrange cohomological approach directly to the symplectic and multisymplectic algorithms. We will show that either Hamiltonian schemes or Lagrangian ones in both the symplectic and multisymplectic algorithms are variational integrators and their difference discrete symplectic structure-preserving properties can always be established not only in the solution space but also in the function space if and only if the related closed Euler?Lagrange cohomological conditions are satisfied.
文摘In this second paper of a series of papers, we explore the difference discrete versions for the Euler?Lagrange cohomology and apply them to the symplectic or multisymplectic geometry and their preserving properties in both the Lagrangian and Hamiltonian formalisms for discrete mechanics and field theory in the framework of multi-parameter differential approach. In terms of the difference discrete Euler?Lagrange cohomological concepts, we show that the symplectic or multisymplectic geometry and their difference discrete structure-preserving properties can always be established not only in the solution spaces of the discrete Euler?Lagrange or canonical equations derived by the difference discrete variational principle but also in the function space in each case if and only if the relevant closed Euler?Lagrange cohomological conditions are satisfied.
文摘We present the symplectic algorithm in the Lagrangian formalism for the Hamiltonian systems by virtue of the noncommutative differential calculus with respect to the discrete time and the Euler-Lagrange cohomological concepts. We also show that the trapezoidal integrator is symplectic in certain sense.
文摘We introduce the Euler-Lagrange cohomology to study the symplectic and multisymplectic structures and their preserving properties in finite and infinite dimensional Lagrangian systems respectively. We also explore their certain difference discrete counterparts in the relevant regularly discretized finite and infinite dimensional Lagrangian systems by means of the difference discrete variational principle with the difference being regarded as an entire geometric object and the noncommutative differential calculus on regular lattice. In order to show that in all these cases the symplectic and multisymplectic preserving properties do not necessarily depend on the relevant Euler-Lagrange equations, the Euler-Lagrange cohomological concepts and content in the configuration space are employed.