The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are de...The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are derived to guarantee the stability of the overall fuzzy system. The stabilization conditions are further formulated into linear matrix inequality (LMI) so that the desired controller can be easily obtained by using the Matlab LMI toolbox. In comparison with the existing results, the drawbacks, such as coordinate transformation, same output matrices, have been elim- inated. Finally, a simulation example shows that the approach is effective.展开更多
This paper focuses on the problem of non-fragile guaranteed cost control for a class of T-S discrete-time fuzzy bilinear systems(DFBS).Based on the parallel distributed compensation(PDC) approach,the sufficient co...This paper focuses on the problem of non-fragile guaranteed cost control for a class of T-S discrete-time fuzzy bilinear systems(DFBS).Based on the parallel distributed compensation(PDC) approach,the sufficient conditions are derived such that the closed-loop system is asymptotically stable and the cost function value is no more than a certain upper bound in the presence of the additive controller gain perturbations.The non-fragile guaranteed cost controller can be obtained by solving a set of bilinear matrix inequalities(BMIs).The Van de Vusse model is utilized to demonstrate the validity and effectiveness of the proposed approach.展开更多
文摘The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are derived to guarantee the stability of the overall fuzzy system. The stabilization conditions are further formulated into linear matrix inequality (LMI) so that the desired controller can be easily obtained by using the Matlab LMI toolbox. In comparison with the existing results, the drawbacks, such as coordinate transformation, same output matrices, have been elim- inated. Finally, a simulation example shows that the approach is effective.
基金supported by the National Natural Science Foundation of China(60374015)
文摘This paper focuses on the problem of non-fragile guaranteed cost control for a class of T-S discrete-time fuzzy bilinear systems(DFBS).Based on the parallel distributed compensation(PDC) approach,the sufficient conditions are derived such that the closed-loop system is asymptotically stable and the cost function value is no more than a certain upper bound in the presence of the additive controller gain perturbations.The non-fragile guaranteed cost controller can be obtained by solving a set of bilinear matrix inequalities(BMIs).The Van de Vusse model is utilized to demonstrate the validity and effectiveness of the proposed approach.