A conduction heat transfer process is enhanced by filling prescribed quantity and optimized-shaped high thermal conductivity materials to the substrate. Numerical simulations and analyses are performed on a volume to ...A conduction heat transfer process is enhanced by filling prescribed quantity and optimized-shaped high thermal conductivity materials to the substrate. Numerical simulations and analyses are performed on a volume to point conduction problem based on the principle of minimum entropy generation. In the optimization, the arrangement of high thermal conductivity materials is variable, the quantity of high thermal-conductivity material is constrained, and the objective is to obtain the maximum heat conduction rate as the entropy is the minimum.A novel algorithm of thermal conductivity discretization is proposed based on large quantity of calculations.Compared with other algorithms in literature, the average temperature in the substrate by the new algorithm is lower, while the highest temperature in the substrate is in a reasonable range. Thus the new algorithm is feasible. The optimization of volume to point heat conduction is carried out in a rectangular model with radiation boundary condition and constant surface temperature boundary condition. The results demonstrate that the algorithm of thermal conductivity discretization is applicable for volume to point heat conduction problems.展开更多
This work investigates a multi-product parallel disassembly line balancing problem considering multi-skilled workers.A mathematical model for the parallel disassembly line is established to achieve maximized disassemb...This work investigates a multi-product parallel disassembly line balancing problem considering multi-skilled workers.A mathematical model for the parallel disassembly line is established to achieve maximized disassembly profit and minimized workstation cycle time.Based on a product’s AND/OR graph,matrices for task-skill,worker-skill,precedence relationships,and disassembly correlations are developed.A multi-objective discrete chemical reaction optimization algorithm is designed.To enhance solution diversity,improvements are made to four reactions:decomposition,synthesis,intermolecular ineffective collision,and wall invalid collision reaction,completing the evolution of molecular individuals.The established model and improved algorithm are applied to ball pen,flashlight,washing machine,and radio combinations,respectively.Introducing a Collaborative Resource Allocation(CRA)strategy based on a Decomposition-Based Multi-Objective Evolutionary Algorithm,the experimental results are compared with four classical algorithms:MOEA/D,MOEAD-CRA,Non-dominated Sorting Genetic Algorithm Ⅱ(NSGA-Ⅱ),and Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ).This validates the feasibility and superiority of the proposed algorithm in parallel disassembly production lines.展开更多
Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a s...Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a significant problem.The development of secure communication methods that keep recipient-only data transmissions secret has always been an area of interest.Therefore,several approaches,including steganography,have been developed by researchers over time to enable safe data transit.In this review,we have discussed image steganography based on Discrete Cosine Transform(DCT)algorithm,etc.We have also discussed image steganography based on multiple hashing algorithms like the Rivest–Shamir–Adleman(RSA)method,the Blowfish technique,and the hash-least significant bit(LSB)approach.In this review,a novel method of hiding information in images has been developed with minimal variance in image bits,making our method secure and effective.A cryptography mechanism was also used in this strategy.Before encoding the data and embedding it into a carry image,this review verifies that it has been encrypted.Usually,embedded text in photos conveys crucial signals about the content.This review employs hash table encryption on the message before hiding it within the picture to provide a more secure method of data transport.If the message is ever intercepted by a third party,there are several ways to stop this operation.A second level of security process implementation involves encrypting and decrypting steganography images using different hashing algorithms.展开更多
Impact dynamics of flexible solids is important in engineering practice. Obtaining its dynamic response is a challenging task and usually achieved by numerical methods. The objectives of the study are twofold. Firstly...Impact dynamics of flexible solids is important in engineering practice. Obtaining its dynamic response is a challenging task and usually achieved by numerical methods. The objectives of the study are twofold. Firstly, the discrete singular convolution (DSC) is used for the first time to analyze the impact dynamics. Secondly, the efficiency of various numerical methods for dynamic analysis is explored via an example of a flexible rod hit by a rigid ball. Three numerical methods, including the conventional finite element (FE) method, the DSC algorithm, and the spectral finite element (SFE) method, and one proposed modeling strategy, the improved spectral finite element (ISFE) method, are involved. Numerical results are compared with the known analytical solutions to show their efficiency. It is demonstrated that the proposed ISFE modeling strategy with a proper length of con- ventional FE yields the most accurate contact stress among the four investigated models. It is also found that the DSC algorithm is an alternative method for collision problems.展开更多
Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzz...Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzzy Entropy of Discrete Particle Swarm Optimization(IFDPSO) and makes it applied to Dynamic Weapon Target Assignment(WTA). First, the strategy of choosing intuitionistic fuzzy parameters of particle swarm is defined, making intuitionistic fuzzy entropy as a basic parameter for measure and velocity mutation. Second, through analyzing the defects of DPSO, an adjusting parameter for balancing two cognition, velocity mutation mechanism and position mutation strategy are designed, and then two sets of improved and derivative algorithms for IFDPSO are put forward, which ensures the IFDPSO possibly search as much as possible sub-optimal positions and its neighborhood and the algorithm ability of searching global optimal value in solving large scale 0-1 knapsack problem is intensified. Third, focusing on the problem of WTA, some parameters including dynamic parameter for shifting firepower and constraints are designed to solve the problems of weapon target assignment. In addition, WTA Optimization Model with time and resource constraints is finally set up, which also intensifies the algorithm ability of searching global and local best value in the solution of WTA problem. Finally, the superiority of IFDPSO is proved by several simulation experiments. Particularly, IFDPSO, IFDPSO1~IFDPSO3 are respectively effective in solving large scale, medium scale or strict constraint problems such as 0-1 knapsack problem and WTA problem.展开更多
In consideration of the resource wasted by unreasonable layout scheme of tidal current turbines, which would influence the ratio of cost and power output, particle swarm optimization algorithm is introduced and improv...In consideration of the resource wasted by unreasonable layout scheme of tidal current turbines, which would influence the ratio of cost and power output, particle swarm optimization algorithm is introduced and improved in the paper. In order to solve the problem of optimal array of tidal turbines, the discrete particle swarm optimization(DPSO) algorithm has been performed by re-defining the updating strategies of particles’ velocity and position. This paper analyzes the optimization problem of micrositing of tidal current turbines by adjusting each turbine’s position,where the maximum value of total electric power is obtained at the maximum speed in the flood tide and ebb tide.Firstly, the best installed turbine number is generated by maximizing the output energy in the given tidal farm by the Farm/Flux and empirical method. Secondly, considering the wake effect, the reasonable distance between turbines,and the tidal velocities influencing factors in the tidal farm, Jensen wake model and elliptic distribution model are selected for the turbines’ total generating capacity calculation at the maximum speed in the flood tide and ebb tide.Finally, the total generating capacity, regarded as objective function, is calculated in the final simulation, thus the DPSO could guide the individuals to the feasible area and optimal position. The results have been concluded that the optimization algorithm, which increased 6.19% more recourse output than experience method, can be thought as a good tool for engineering design of tidal energy demonstration.展开更多
An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effecti...An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effective combination of the insertion and swap operator is applied to producing neighborhood individual at the employed bee phase. The tournament selection is adopted to avoid falling into local optima, while, the optimized insert operator embeds in onlooker bee phase for further searching the neighborhood solution to enhance the local search ability of algorithm. The tournament selection with size 2 is again applied and a better selected solution will be performed destruction and construction of iterated greedy(IG) algorithm, and then the result replaces the worse one. Simulation results show that our algorithm has a better performance compared with the HDDE and CHS which were proposed recently. It provides the better known solutions for the makespan criterion to flow shop scheduling problem with limited buffers for the Car benchmark by Carlier and Rec benchmark by Reeves. The convergence curves show that the algorithm not only has faster convergence speed but also has better convergence value.展开更多
The computational uncertainty principle in nonlinear ordinary differential equations makes the numerical solution of the long-term behavior of nonlinear atmospheric equations have no meaning. The main reason is that, ...The computational uncertainty principle in nonlinear ordinary differential equations makes the numerical solution of the long-term behavior of nonlinear atmospheric equations have no meaning. The main reason is that, in the error analysis theory of present-day computational mathematics, the non-linear process between truncation error and rounding error is treated as a linear operation. In this paper, based on the operator equations of large-scale atmospheric movement, the above limitation is overcome by using the notion of cell mapping. Through studying the global asymptotic characteristics of the numerical pattern of the large-scale atmospheric equations, the definitions of the global convergence and an appropriate discrete algorithm of the numerical pattern are put forward. Three determinant theorems about the global convergence of the numerical pattern are presented, which provide the theoretical basis for constructing the globally convergent numerical pattern. Further, it is pointed out that only a globally convergent numerical pattern can improve the veracity of climatic prediction.展开更多
Pressure fluctuation due to rotor-stator interaction in turbomachinery is unavoidable,inducing strong vibration in the equipment and shortening its lifecycle.The investigation of optimization methods for an industrial...Pressure fluctuation due to rotor-stator interaction in turbomachinery is unavoidable,inducing strong vibration in the equipment and shortening its lifecycle.The investigation of optimization methods for an industrial centrifugal pump was carried out to reduce the intensity of pressure fluctuation to extend the lifecycle of these devices.Considering the time-consuming transient simulation of unsteady pressure,a novel optimization strategy was proposed by discretizing design variables and genetic algorithm.Four highly related design parameters were chosen,and 40 transient sample cases were generated and simulated using an automatic program.70%of them were used for training the surrogate model,and the others were for verifying the accuracy of the surrogate model.Furthermore,a modified discrete genetic algorithm(MDGA)was proposed to reduce the optimization cost owing to transient numerical simulation.For the benchmark test,the proposed MDGA showed a great advantage over the original genetic algorithm regarding searching speed and effectively dealt with the discrete variables by dramatically increasing the convergence rate.After optimization,the performance and stability of the inline pump were improved.The efficiency increased by more than 2.2%,and the pressure fluctuation intensity decreased by more than 20%under design condition.This research proposed an optimization method for reducing discrete transient characteristics in centrifugal pumps.展开更多
As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optim...As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time.展开更多
A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forc...A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.展开更多
We propose a protocol for information sharing between two legitimate parties (Bob and Alice) via public-key cryptography. In particular, we specialize the protocol by employing discrete algorithm under mod that maps...We propose a protocol for information sharing between two legitimate parties (Bob and Alice) via public-key cryptography. In particular, we specialize the protocol by employing discrete algorithm under mod that maps integers to quantum states via photon rotations. Based on this algorithm, we find that the protocol is secure under various classes of attacks. Specially, owe to the algorithm, the security of the classical privacy contained in the quantum public-key and the corresponding ciphertext is guaranteed. And the protocol is robust against the impersonation attack and the active wiretapping attack by designing particular checking processing, thus the protocol is valid.展开更多
This paper presents an optimal proposed allocating procedure for hybrid wind energy combined with proton exchange membrane fuel cell (WE/PEMFC) system to improve the operation performance of the electrical distributio...This paper presents an optimal proposed allocating procedure for hybrid wind energy combined with proton exchange membrane fuel cell (WE/PEMFC) system to improve the operation performance of the electrical distribution system (EDS). Egypt has an excellent wind regime with wind speeds of about 10 m/s at many areas. The disadvantage of wind energy is its seasonal variations. So, if wind power is to supply a significant portion of the demand, either backup power or electrical energy storage (EES) system is needed to ensure that loads will be supplied in reliable way. So, the hybrid WE/PEMFC system is designed to completely supply a part of the Egyptian distribution system, in attempt to isolate it from the grid. However, the optimal allocation of the hybrid units is obtained, in order to enhance their benefits in the distribution networks. The critical buses that are necessary to install the hybrid WE/ PEMFC system, are chosen using sensitivity analysis. Then, the binary Crow search algorithm (BCSA), discrete Jaya algorithm (DJA) and binary particle swarm optimization (BPSO) techniques are proposed to determine the optimal operation of power systems using single and multi-objective functions (SOF/MOF). Then, the results of the three optimization techniques are compared with each other. Three sensitivity factors are employed in this paper, which are voltage sensitivity factor (VSF), active losses sensitivity factor (ALSF) and reactive losses sensitivity factor (RLSF). The effects of the sensitivity factors (SFs) on the SOF/MOF are studied. The improvement of voltage profile and minimizing active and reactive power losses of the EDS are considered as objective functions. Backward/forward sweep (BFS) method is used for the load flow calculations. The system load demand is predicted up to year 2022 for Mersi-Matrouh City as a part of Egyptian distribution network, and the design of the hybrid WE/PEMFC system is applied. The PEMFC system is designed considering simplified mathematical expressions. The economics of operation of both WE and PEMFC system are also presented. The results prove the capability of the proposed procedure to find the optimal allocation for the hybrid WE/PEMFC system to improve the system voltage profile and to minimize both active and reactive power losses for the EDS of Mersi-Matrough City.展开更多
Color economy and market fashion trend have an increasing impact on clothing fabric color matching.Therefore,a smart clothing fabric color matching system with reference to popular colors is designed to realize the di...Color economy and market fashion trend have an increasing impact on clothing fabric color matching.Therefore,a smart clothing fabric color matching system with reference to popular colors is designed to realize the diversification of clothing color matching,which includes a palette generation module and a clothing fabrics-palette color matching network(CF-PCN).Firstly,palette generation module generates palettes referring popular colors while maintains color styles of clothing fabrics.Secondly,CF-PCN generates color matching images containing color information of palettes.The experimental results show that the color matching system has a higher average pixel ratio of palette colors and contains more palette color information.It demonstrates that the system achieves color matching innovation referring popular colors while retaining color style of clothing brands and provides designers with appropriate color matching solutions.展开更多
Finding out the key node sets that affect network robustness has great practical significance for network protection and network disintegration.In this paper,the problem of finding key node sets in complex networks is...Finding out the key node sets that affect network robustness has great practical significance for network protection and network disintegration.In this paper,the problem of finding key node sets in complex networks is defined firstly.Because it is an NP-hard combinatorial optimization problem,discrete fireworks algorithm is introduced to search the optimal solution,which is a swarm intelligence algorithm and is improved by the prior information of networks.To verify the effect of improved discrete fireworks algorithm(IDFA),experiments are carried out on various model networks and real power grid.Results show that the proposed IDFA is obviously superior to the benchmark algorithms,and networks suffer more damage when the key node sets obtained by IDFA are removed from the networks.The key node sets found by IDFA contain a large number of non-central nodes,which provides the authors a new perspective that the seemingly insignificant nodes may also have an important impact on the robustness of the network.展开更多
In this paper, we have proved that the lower bound of the number of real multiplications for computing a length 2(t) real GFT(a,b) (a = +/-1/2, b = 0 or b = +/-1/2, a = 0) is 2(t+1) - 2t - 2 and that for computing a l...In this paper, we have proved that the lower bound of the number of real multiplications for computing a length 2(t) real GFT(a,b) (a = +/-1/2, b = 0 or b = +/-1/2, a = 0) is 2(t+1) - 2t - 2 and that for computing a length 2t real GFT(a,b)(a = +/-1/2, b = +/-1/2) is 2(t+1) - 2. Practical algorithms which meet the lower bounds of multiplications are given.展开更多
基金Supported by the National Key Basic Research Program of China(2013CB228305)
文摘A conduction heat transfer process is enhanced by filling prescribed quantity and optimized-shaped high thermal conductivity materials to the substrate. Numerical simulations and analyses are performed on a volume to point conduction problem based on the principle of minimum entropy generation. In the optimization, the arrangement of high thermal conductivity materials is variable, the quantity of high thermal-conductivity material is constrained, and the objective is to obtain the maximum heat conduction rate as the entropy is the minimum.A novel algorithm of thermal conductivity discretization is proposed based on large quantity of calculations.Compared with other algorithms in literature, the average temperature in the substrate by the new algorithm is lower, while the highest temperature in the substrate is in a reasonable range. Thus the new algorithm is feasible. The optimization of volume to point heat conduction is carried out in a rectangular model with radiation boundary condition and constant surface temperature boundary condition. The results demonstrate that the algorithm of thermal conductivity discretization is applicable for volume to point heat conduction problems.
文摘This work investigates a multi-product parallel disassembly line balancing problem considering multi-skilled workers.A mathematical model for the parallel disassembly line is established to achieve maximized disassembly profit and minimized workstation cycle time.Based on a product’s AND/OR graph,matrices for task-skill,worker-skill,precedence relationships,and disassembly correlations are developed.A multi-objective discrete chemical reaction optimization algorithm is designed.To enhance solution diversity,improvements are made to four reactions:decomposition,synthesis,intermolecular ineffective collision,and wall invalid collision reaction,completing the evolution of molecular individuals.The established model and improved algorithm are applied to ball pen,flashlight,washing machine,and radio combinations,respectively.Introducing a Collaborative Resource Allocation(CRA)strategy based on a Decomposition-Based Multi-Objective Evolutionary Algorithm,the experimental results are compared with four classical algorithms:MOEA/D,MOEAD-CRA,Non-dominated Sorting Genetic Algorithm Ⅱ(NSGA-Ⅱ),and Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ).This validates the feasibility and superiority of the proposed algorithm in parallel disassembly production lines.
文摘Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a significant problem.The development of secure communication methods that keep recipient-only data transmissions secret has always been an area of interest.Therefore,several approaches,including steganography,have been developed by researchers over time to enable safe data transit.In this review,we have discussed image steganography based on Discrete Cosine Transform(DCT)algorithm,etc.We have also discussed image steganography based on multiple hashing algorithms like the Rivest–Shamir–Adleman(RSA)method,the Blowfish technique,and the hash-least significant bit(LSB)approach.In this review,a novel method of hiding information in images has been developed with minimal variance in image bits,making our method secure and effective.A cryptography mechanism was also used in this strategy.Before encoding the data and embedding it into a carry image,this review verifies that it has been encrypted.Usually,embedded text in photos conveys crucial signals about the content.This review employs hash table encryption on the message before hiding it within the picture to provide a more secure method of data transport.If the message is ever intercepted by a third party,there are several ways to stop this operation.A second level of security process implementation involves encrypting and decrypting steganography images using different hashing algorithms.
基金Supported by the National Natural Science Foundation of China(50830201)the Priority Academic Program Development of Jiangsu Higher Education Institutions~~
文摘Impact dynamics of flexible solids is important in engineering practice. Obtaining its dynamic response is a challenging task and usually achieved by numerical methods. The objectives of the study are twofold. Firstly, the discrete singular convolution (DSC) is used for the first time to analyze the impact dynamics. Secondly, the efficiency of various numerical methods for dynamic analysis is explored via an example of a flexible rod hit by a rigid ball. Three numerical methods, including the conventional finite element (FE) method, the DSC algorithm, and the spectral finite element (SFE) method, and one proposed modeling strategy, the improved spectral finite element (ISFE) method, are involved. Numerical results are compared with the known analytical solutions to show their efficiency. It is demonstrated that the proposed ISFE modeling strategy with a proper length of con- ventional FE yields the most accurate contact stress among the four investigated models. It is also found that the DSC algorithm is an alternative method for collision problems.
基金supported by The National Natural Science Foundation of China under Grant Nos.61402517, 61573375The Foundation of State Key Laboratory of Astronautic Dynamics of China under Grant No. 2016ADL-DW0302+2 种基金The Postdoctoral Science Foundation of China under Grant Nos. 2013M542331, 2015M572778The Natural Science Foundation of Shaanxi Province of China under Grant No. 2013JQ8035The Aviation Science Foundation of China under Grant No. 20151996015
文摘Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzzy Entropy of Discrete Particle Swarm Optimization(IFDPSO) and makes it applied to Dynamic Weapon Target Assignment(WTA). First, the strategy of choosing intuitionistic fuzzy parameters of particle swarm is defined, making intuitionistic fuzzy entropy as a basic parameter for measure and velocity mutation. Second, through analyzing the defects of DPSO, an adjusting parameter for balancing two cognition, velocity mutation mechanism and position mutation strategy are designed, and then two sets of improved and derivative algorithms for IFDPSO are put forward, which ensures the IFDPSO possibly search as much as possible sub-optimal positions and its neighborhood and the algorithm ability of searching global optimal value in solving large scale 0-1 knapsack problem is intensified. Third, focusing on the problem of WTA, some parameters including dynamic parameter for shifting firepower and constraints are designed to solve the problems of weapon target assignment. In addition, WTA Optimization Model with time and resource constraints is finally set up, which also intensifies the algorithm ability of searching global and local best value in the solution of WTA problem. Finally, the superiority of IFDPSO is proved by several simulation experiments. Particularly, IFDPSO, IFDPSO1~IFDPSO3 are respectively effective in solving large scale, medium scale or strict constraint problems such as 0-1 knapsack problem and WTA problem.
基金financially supported by the Marine Renewable Energy Funding Project(Grant Nos.GHME2017ZC01 and GHME2016ZC04)the National Natural Science Foundation of China(Grant Nos.5171101175 and 51679125)+1 种基金Tianjin Municipal Natural Science Foundation(Grant No.16JCYBJC20600)Technology Innovation Fund of National Ocean Technology Center(Grant No.F2180Z002)
文摘In consideration of the resource wasted by unreasonable layout scheme of tidal current turbines, which would influence the ratio of cost and power output, particle swarm optimization algorithm is introduced and improved in the paper. In order to solve the problem of optimal array of tidal turbines, the discrete particle swarm optimization(DPSO) algorithm has been performed by re-defining the updating strategies of particles’ velocity and position. This paper analyzes the optimization problem of micrositing of tidal current turbines by adjusting each turbine’s position,where the maximum value of total electric power is obtained at the maximum speed in the flood tide and ebb tide.Firstly, the best installed turbine number is generated by maximizing the output energy in the given tidal farm by the Farm/Flux and empirical method. Secondly, considering the wake effect, the reasonable distance between turbines,and the tidal velocities influencing factors in the tidal farm, Jensen wake model and elliptic distribution model are selected for the turbines’ total generating capacity calculation at the maximum speed in the flood tide and ebb tide.Finally, the total generating capacity, regarded as objective function, is calculated in the final simulation, thus the DPSO could guide the individuals to the feasible area and optimal position. The results have been concluded that the optimization algorithm, which increased 6.19% more recourse output than experience method, can be thought as a good tool for engineering design of tidal energy demonstration.
基金Projects(61174040,61104178,61374136) supported by the National Natural Science Foundation of ChinaProject(12JC1403400) supported by Shanghai Commission of Science and Technology,ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effective combination of the insertion and swap operator is applied to producing neighborhood individual at the employed bee phase. The tournament selection is adopted to avoid falling into local optima, while, the optimized insert operator embeds in onlooker bee phase for further searching the neighborhood solution to enhance the local search ability of algorithm. The tournament selection with size 2 is again applied and a better selected solution will be performed destruction and construction of iterated greedy(IG) algorithm, and then the result replaces the worse one. Simulation results show that our algorithm has a better performance compared with the HDDE and CHS which were proposed recently. It provides the better known solutions for the makespan criterion to flow shop scheduling problem with limited buffers for the Car benchmark by Carlier and Rec benchmark by Reeves. The convergence curves show that the algorithm not only has faster convergence speed but also has better convergence value.
文摘The computational uncertainty principle in nonlinear ordinary differential equations makes the numerical solution of the long-term behavior of nonlinear atmospheric equations have no meaning. The main reason is that, in the error analysis theory of present-day computational mathematics, the non-linear process between truncation error and rounding error is treated as a linear operation. In this paper, based on the operator equations of large-scale atmospheric movement, the above limitation is overcome by using the notion of cell mapping. Through studying the global asymptotic characteristics of the numerical pattern of the large-scale atmospheric equations, the definitions of the global convergence and an appropriate discrete algorithm of the numerical pattern are put forward. Three determinant theorems about the global convergence of the numerical pattern are presented, which provide the theoretical basis for constructing the globally convergent numerical pattern. Further, it is pointed out that only a globally convergent numerical pattern can improve the veracity of climatic prediction.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFC3202901)Natural Science Foundation of China(Grant No.51879121)+1 种基金Jiangsu Provincial Primary Research&Development Plan(Grant No.BE2019009-1)China Scholarship Council(Grant No.202108690020).
文摘Pressure fluctuation due to rotor-stator interaction in turbomachinery is unavoidable,inducing strong vibration in the equipment and shortening its lifecycle.The investigation of optimization methods for an industrial centrifugal pump was carried out to reduce the intensity of pressure fluctuation to extend the lifecycle of these devices.Considering the time-consuming transient simulation of unsteady pressure,a novel optimization strategy was proposed by discretizing design variables and genetic algorithm.Four highly related design parameters were chosen,and 40 transient sample cases were generated and simulated using an automatic program.70%of them were used for training the surrogate model,and the others were for verifying the accuracy of the surrogate model.Furthermore,a modified discrete genetic algorithm(MDGA)was proposed to reduce the optimization cost owing to transient numerical simulation.For the benchmark test,the proposed MDGA showed a great advantage over the original genetic algorithm regarding searching speed and effectively dealt with the discrete variables by dramatically increasing the convergence rate.After optimization,the performance and stability of the inline pump were improved.The efficiency increased by more than 2.2%,and the pressure fluctuation intensity decreased by more than 20%under design condition.This research proposed an optimization method for reducing discrete transient characteristics in centrifugal pumps.
基金supported by the National Natural Science Foundation of China(61771293)the Key Project of Shangdong Province(2019JZZY010111)。
文摘As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)the Fundamental Research Funds for the Central Universities(K50511700004)
文摘A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.
基金Supported by National Natural Science Foundation of China under Grant No.10374025the Education Ministry of Hunan Province under Grant No.06A038the Natural Science Foundation of Hunan Province under Grant No.07JJ3013
文摘We propose a protocol for information sharing between two legitimate parties (Bob and Alice) via public-key cryptography. In particular, we specialize the protocol by employing discrete algorithm under mod that maps integers to quantum states via photon rotations. Based on this algorithm, we find that the protocol is secure under various classes of attacks. Specially, owe to the algorithm, the security of the classical privacy contained in the quantum public-key and the corresponding ciphertext is guaranteed. And the protocol is robust against the impersonation attack and the active wiretapping attack by designing particular checking processing, thus the protocol is valid.
文摘This paper presents an optimal proposed allocating procedure for hybrid wind energy combined with proton exchange membrane fuel cell (WE/PEMFC) system to improve the operation performance of the electrical distribution system (EDS). Egypt has an excellent wind regime with wind speeds of about 10 m/s at many areas. The disadvantage of wind energy is its seasonal variations. So, if wind power is to supply a significant portion of the demand, either backup power or electrical energy storage (EES) system is needed to ensure that loads will be supplied in reliable way. So, the hybrid WE/PEMFC system is designed to completely supply a part of the Egyptian distribution system, in attempt to isolate it from the grid. However, the optimal allocation of the hybrid units is obtained, in order to enhance their benefits in the distribution networks. The critical buses that are necessary to install the hybrid WE/ PEMFC system, are chosen using sensitivity analysis. Then, the binary Crow search algorithm (BCSA), discrete Jaya algorithm (DJA) and binary particle swarm optimization (BPSO) techniques are proposed to determine the optimal operation of power systems using single and multi-objective functions (SOF/MOF). Then, the results of the three optimization techniques are compared with each other. Three sensitivity factors are employed in this paper, which are voltage sensitivity factor (VSF), active losses sensitivity factor (ALSF) and reactive losses sensitivity factor (RLSF). The effects of the sensitivity factors (SFs) on the SOF/MOF are studied. The improvement of voltage profile and minimizing active and reactive power losses of the EDS are considered as objective functions. Backward/forward sweep (BFS) method is used for the load flow calculations. The system load demand is predicted up to year 2022 for Mersi-Matrouh City as a part of Egyptian distribution network, and the design of the hybrid WE/PEMFC system is applied. The PEMFC system is designed considering simplified mathematical expressions. The economics of operation of both WE and PEMFC system are also presented. The results prove the capability of the proposed procedure to find the optimal allocation for the hybrid WE/PEMFC system to improve the system voltage profile and to minimize both active and reactive power losses for the EDS of Mersi-Matrough City.
基金National Natural Science Foundation of China(No.62001099)National Key Research&Development Program of China(No.2019YFC1521300)Fundamental Research Funds for the Central Universities,China(No.17D110408)。
文摘Color economy and market fashion trend have an increasing impact on clothing fabric color matching.Therefore,a smart clothing fabric color matching system with reference to popular colors is designed to realize the diversification of clothing color matching,which includes a palette generation module and a clothing fabrics-palette color matching network(CF-PCN).Firstly,palette generation module generates palettes referring popular colors while maintains color styles of clothing fabrics.Secondly,CF-PCN generates color matching images containing color information of palettes.The experimental results show that the color matching system has a higher average pixel ratio of palette colors and contains more palette color information.It demonstrates that the system achieves color matching innovation referring popular colors while retaining color style of clothing brands and provides designers with appropriate color matching solutions.
基金supported by the National Natural Science Foundation of China under Grant No.61502522。
文摘Finding out the key node sets that affect network robustness has great practical significance for network protection and network disintegration.In this paper,the problem of finding key node sets in complex networks is defined firstly.Because it is an NP-hard combinatorial optimization problem,discrete fireworks algorithm is introduced to search the optimal solution,which is a swarm intelligence algorithm and is improved by the prior information of networks.To verify the effect of improved discrete fireworks algorithm(IDFA),experiments are carried out on various model networks and real power grid.Results show that the proposed IDFA is obviously superior to the benchmark algorithms,and networks suffer more damage when the key node sets obtained by IDFA are removed from the networks.The key node sets found by IDFA contain a large number of non-central nodes,which provides the authors a new perspective that the seemingly insignificant nodes may also have an important impact on the robustness of the network.
文摘In this paper, we have proved that the lower bound of the number of real multiplications for computing a length 2(t) real GFT(a,b) (a = +/-1/2, b = 0 or b = +/-1/2, a = 0) is 2(t+1) - 2t - 2 and that for computing a length 2t real GFT(a,b)(a = +/-1/2, b = +/-1/2) is 2(t+1) - 2. Practical algorithms which meet the lower bounds of multiplications are given.