Accurate pancreas segmentation is critical for the diagnosis and management of diseases of the pancreas. It is challenging to precisely delineate pancreas due to the highly variations in volume, shape and location. In...Accurate pancreas segmentation is critical for the diagnosis and management of diseases of the pancreas. It is challenging to precisely delineate pancreas due to the highly variations in volume, shape and location. In recent years, coarse-to-fine methods have been widely used to alleviate class imbalance issue and improve pancreas segmentation accuracy. However,cascaded methods could be computationally intensive and the refined results are significantly dependent on the performance of its coarse segmentation results. To balance the segmentation accuracy and computational efficiency, we propose a Discriminative Feature Attention Network for pancreas segmentation, to effectively highlight pancreas features and improve segmentation accuracy without explicit pancreas location. The final segmentation is obtained by applying a simple yet effective post-processing step. Two experiments on both public NIH pancreas CT dataset and abdominal BTCV multi-organ dataset are individually conducted to show the effectiveness of our method for 2 D pancreas segmentation. We obtained average Dice Similarity Coefficient(DSC) of 82.82±6.09%, average Jaccard Index(JI) of 71.13± 8.30% and average Symmetric Average Surface Distance(ASD) of 1.69 ± 0.83 mm on the NIH dataset. Compared to the existing deep learning-based pancreas segmentation methods, our experimental results achieve the best average DSC and JI value.展开更多
Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received in...Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasingattention and achieved some results. It might lead to insufficient performance for using transfer learning alone andcause misclassification of target samples for domain bias when building deep models to learn domain-invariantfeatures. To address the above problems, a deep discriminative adversarial domain adaptation neural networkfor the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are firstlyconverted into frequency domain data by Fast Fourier Transform, and an improved deep convolutional neuralnetwork with wide first-layer kernels is used as a feature extractor to extract deep fault features. Then, domaininvariant features are learned from the fault data with correlation alignment-based domain adversarial training.Furthermore, to enhance the discriminative property of features, discriminative feature learning is embeddedinto this network to make the features compact, as well as separable between classes within the class. Finally, theperformance and anti-noise capability of the proposedmethod are evaluated using two sets of bearing fault datasets.The results demonstrate that the proposed method is capable of handling domain offset caused by differentworkingconditions and maintaining more than 97.53% accuracy on various transfer tasks. Furthermore, the proposedmethod can achieve high diagnostic accuracy under varying noise levels.展开更多
Visible-infrared person re-identification has attracted extensive attention from the community due to its potential great application prospects in video surveillance.There are huge modality discrepancies between visib...Visible-infrared person re-identification has attracted extensive attention from the community due to its potential great application prospects in video surveillance.There are huge modality discrepancies between visible and infrared images caused by different imaging mechanisms.Existing studies alleviate modality discrepancies by aligning modality distribution or extracting modality-shared features on the original image.However,they ignore a key solution,i.e.,converting visible images to gray images directly,which is efficient and effective to reduce modality discrepancies.In this paper,we transform the cross-modality person re-identification task from visible-infrared images to gray-infrared images,which is named as the minimal modality discrepancy.In addition,we propose a pyramid feature integration network(PFINet)which mines the discriminative refined features of pedestrian images and fuses high-level and semantically strong features to build a robust pedestrian representation.Specifically,PFINet first performs the feature extraction from concrete to abstract and the top-down semantic transfer to obtain multi-scale feature maps.Second,the multi-scale feature maps are inputted to the discriminative-region response module to emphasize the identity-discriminative regions by the spatial attention mechanism.Finally,the pedestrian representation is obtained by the feature integration.Extensive experiments demonstrate the effectiveness of PFINet which achieves the rank-1 accuracy of 81.95%and mAP of 74.49%on the multi-all evaluation mode of the SYSU-MM01 dataset.展开更多
To investigate the robustness of face recognition algorithms under the complicated variations of illumination, facial expression and posture, the advantages and disadvantages of seven typical algorithms on extracting ...To investigate the robustness of face recognition algorithms under the complicated variations of illumination, facial expression and posture, the advantages and disadvantages of seven typical algorithms on extracting global and local features are studied through the experiments respectively on the Olivetti Research Laboratory database and the other three databases (the three subsets of illumination, expression and posture that are constructed by selecting images from several existing face databases). By taking the above experimental results into consideration, two schemes of face recognition which are based on the decision fusion of the twodimensional linear discriminant analysis (2DLDA) and local binary pattern (LBP) are proposed in this paper to heighten the recognition rates. In addition, partitioning a face nonuniformly for its LBP histograms is conducted to improve the performance. Our experimental results have shown the complementarities of the two kinds of features, the 2DLDA and LBP, and have verified the effectiveness of the proposed fusion algorithms.展开更多
基金Supported by the Ph.D. Research Startup Project of Minnan Normal University(KJ2021020)the National Natural Science Foundation of China(12090020 and 12090025)Zhejiang Provincial Natural Science Foundation of China(LSD19H180005)。
文摘Accurate pancreas segmentation is critical for the diagnosis and management of diseases of the pancreas. It is challenging to precisely delineate pancreas due to the highly variations in volume, shape and location. In recent years, coarse-to-fine methods have been widely used to alleviate class imbalance issue and improve pancreas segmentation accuracy. However,cascaded methods could be computationally intensive and the refined results are significantly dependent on the performance of its coarse segmentation results. To balance the segmentation accuracy and computational efficiency, we propose a Discriminative Feature Attention Network for pancreas segmentation, to effectively highlight pancreas features and improve segmentation accuracy without explicit pancreas location. The final segmentation is obtained by applying a simple yet effective post-processing step. Two experiments on both public NIH pancreas CT dataset and abdominal BTCV multi-organ dataset are individually conducted to show the effectiveness of our method for 2 D pancreas segmentation. We obtained average Dice Similarity Coefficient(DSC) of 82.82±6.09%, average Jaccard Index(JI) of 71.13± 8.30% and average Symmetric Average Surface Distance(ASD) of 1.69 ± 0.83 mm on the NIH dataset. Compared to the existing deep learning-based pancreas segmentation methods, our experimental results achieve the best average DSC and JI value.
基金the Natural Science Foundation of Henan Province(232300420094)the Science and TechnologyResearch Project of Henan Province(222102220092).
文摘Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasingattention and achieved some results. It might lead to insufficient performance for using transfer learning alone andcause misclassification of target samples for domain bias when building deep models to learn domain-invariantfeatures. To address the above problems, a deep discriminative adversarial domain adaptation neural networkfor the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are firstlyconverted into frequency domain data by Fast Fourier Transform, and an improved deep convolutional neuralnetwork with wide first-layer kernels is used as a feature extractor to extract deep fault features. Then, domaininvariant features are learned from the fault data with correlation alignment-based domain adversarial training.Furthermore, to enhance the discriminative property of features, discriminative feature learning is embeddedinto this network to make the features compact, as well as separable between classes within the class. Finally, theperformance and anti-noise capability of the proposedmethod are evaluated using two sets of bearing fault datasets.The results demonstrate that the proposed method is capable of handling domain offset caused by differentworkingconditions and maintaining more than 97.53% accuracy on various transfer tasks. Furthermore, the proposedmethod can achieve high diagnostic accuracy under varying noise levels.
基金the National Key Research and Development Program of China under Grant No.2019YFF0301800the National Natural Science Foundation of China under Grant No.61379106the Shandong Provincial Natural Science Foundation under Grant Nos.ZR2013FM036 and ZR2015FM011.
文摘Visible-infrared person re-identification has attracted extensive attention from the community due to its potential great application prospects in video surveillance.There are huge modality discrepancies between visible and infrared images caused by different imaging mechanisms.Existing studies alleviate modality discrepancies by aligning modality distribution or extracting modality-shared features on the original image.However,they ignore a key solution,i.e.,converting visible images to gray images directly,which is efficient and effective to reduce modality discrepancies.In this paper,we transform the cross-modality person re-identification task from visible-infrared images to gray-infrared images,which is named as the minimal modality discrepancy.In addition,we propose a pyramid feature integration network(PFINet)which mines the discriminative refined features of pedestrian images and fuses high-level and semantically strong features to build a robust pedestrian representation.Specifically,PFINet first performs the feature extraction from concrete to abstract and the top-down semantic transfer to obtain multi-scale feature maps.Second,the multi-scale feature maps are inputted to the discriminative-region response module to emphasize the identity-discriminative regions by the spatial attention mechanism.Finally,the pedestrian representation is obtained by the feature integration.Extensive experiments demonstrate the effectiveness of PFINet which achieves the rank-1 accuracy of 81.95%and mAP of 74.49%on the multi-all evaluation mode of the SYSU-MM01 dataset.
文摘To investigate the robustness of face recognition algorithms under the complicated variations of illumination, facial expression and posture, the advantages and disadvantages of seven typical algorithms on extracting global and local features are studied through the experiments respectively on the Olivetti Research Laboratory database and the other three databases (the three subsets of illumination, expression and posture that are constructed by selecting images from several existing face databases). By taking the above experimental results into consideration, two schemes of face recognition which are based on the decision fusion of the twodimensional linear discriminant analysis (2DLDA) and local binary pattern (LBP) are proposed in this paper to heighten the recognition rates. In addition, partitioning a face nonuniformly for its LBP histograms is conducted to improve the performance. Our experimental results have shown the complementarities of the two kinds of features, the 2DLDA and LBP, and have verified the effectiveness of the proposed fusion algorithms.