The impact of apolipoprotein E(ApoE)isoforms on sporadic Alzheimer's disease has long been studied;however,the influences of apolipoprotein E gene(APOE)on healthy and pathological human brains are not fully unders...The impact of apolipoprotein E(ApoE)isoforms on sporadic Alzheimer's disease has long been studied;however,the influences of apolipoprotein E gene(APOE)on healthy and pathological human brains are not fully understood.ApoE exists as three common isoforms(ApoE2,ApoE3,and ApoE4),which differ in two amino acid residues.Traditionally,ApoE binds cholesterol and phospholipids and ApoE isoforms display diffe rent affinities for their receptors,lipids transport and distribution in the brain and periphery.The role of ApoE in the human depends on ApoE isoforms,brain regions,aging,and neural injury.APOE E4 is the strongest genetic risk factor for sporadic Alzheimer's disease,considering its role in influencing amyloid-beta metabolism.The exact mechanisms by which APOE gene variants may increase or decrease Alzheimer's disease risk are not fully understood,but APOE was also known to affect directly and indirectly tau-mediated neurodegeneration,lipids metabolism,neurovascular unit,and microglial function.Consistent with the biological function of ApoE,ApoE4 isoform significantly alte red signaling pathways associated with cholesterol homeostasis,transport,and myelination.Also,the rare protective APOE variants confirm that ApoE plays an important role in Alzheimer's disease pathogenesis.The objectives of the present mini-review were to describe classical and new roles of various ApoE isoforms in Alzheimer's disease pathophysiology beyond the deposition of amyloid-beta and to establish a functional link between APOE,brain function,and memory,from a molecular to a clinical level.APOE genotype also exerted a heterogeneous effect on clinical Alzheimer's disease phenotype and its outcomes.Not only in learning and memory but also in neuro psychiatric symptoms that occur in a premorbid condition.Cla rifying the relationships between Alzheimer's disease-related pathology with neuropsychiatric symptoms,particularly suicidal ideation in Alzheimer's disease patients,may be useful for elucidating also the underlying pathophysiological process and its prognosis.Also,the effects of anti-amyloid-beta drugs,recently approved for the treatment of Alzheimer's disease,could be influenced by the APOE genotype.展开更多
Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired eli...Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired elimination of these neurotoxic protein.Atypical parkinsonism,which has the same clinical presentation and neuropathology as Parkinson’s disease,expands the disease landscape within the continuum of Parkinson’s disease and related disorders.The glymphatic system is a waste clearance system in the brain,which is responsible for eliminating the neurotoxic proteins from the interstitial fluid.Impairment of the glymphatic system has been proposed as a significant contributor to the development and progression of neurodegenerative disease,as it exacerbates the aggregation of neurotoxic proteins and deteriorates neuronal damage.Therefore,impairment of the glymphatic system could be considered as the final common pathway to neurodegeneration.Previous evidence has provided initial insights into the potential effect of the impaired glymphatic system on Parkinson’s disease and related disorders;however,many unanswered questions remain.This review aims to provide a comprehensive summary of the growing literature on the glymphatic system in Parkinson’s disease and related disorders.The focus of this review is on identifying the manifestations and mechanisms of interplay between the glymphatic system and neurotoxic proteins,including loss of polarization of aquaporin-4 in astrocytic endfeet,sleep and circadian rhythms,neuroinflammation,astrogliosis,and gliosis.This review further delves into the underlying pathophysiology of the glymphatic system in Parkinson’s disease and related disorders,and the potential implications of targeting the glymphatic system as a novel and promising therapeutic strategy.展开更多
In this review,we focus on providing basics and examples for each component of the protein therapeutic specifications to interested pharmacists and biopharmaceutical scientists with a goal to strengthen understanding ...In this review,we focus on providing basics and examples for each component of the protein therapeutic specifications to interested pharmacists and biopharmaceutical scientists with a goal to strengthen understanding in regulatory science and compliance.Pharmaceutical specifications comprise a list of important quality attributes for testing,references to use for test procedures,and appropriate acceptance criteria for the tests,and they are set up to ensure that when a drug product is administered to a patient,its intended therapeutic benefits and safety can be rendered appropriately.Conformance of drug substance or drug product to the specifications is achieved by testing an article according to the listed tests and analytical methods and obtaining test results that meet the acceptance criteria.Quality attributes are chosen to be tested based on their quality risk,and consideration should be given to the merit of the analytical methods which are associated with the acceptance criteria of the specifications.Acceptance criteria are set forth primarily based on efficacy and safety profiles,with an increasing attention noted for patient-centric specifications.Discussed in this work are related guidelines that support the biopharmaceutical specification setting,how to set the acceptance criteria,and examples of the quality attributes and the analytical methods from 60 articles and 23 pharmacopeial monographs.Outlooks are also explored on process analytical technologies and other orthogonal tools which are on-trend in biopharmaceutical characterization and quality control.展开更多
In this editorial,we comment on the article by Liu et al published in the recent issue of the World Journal of Diabetes(Relationship between GCKR gene rs780094 polymorphism and type 2 diabetes with albuminuria).Type 2...In this editorial,we comment on the article by Liu et al published in the recent issue of the World Journal of Diabetes(Relationship between GCKR gene rs780094 polymorphism and type 2 diabetes with albuminuria).Type 2 diabetes mellitus(T2DM)is a chronic disorder characterized by dysregulated glucose homeostasis.The persistent elevated blood glucose level in T2DM significantly increases the risk of developing severe complications,including cardiovascular disease,re-tinopathy,neuropathy,and nephropathy.T2DM arises from a complex interplay between genetic,epigenetic,and environmental factors.Global genomic studies have identified numerous genetic variations associated with an increased risk of T2DM.Specifically,variations within the glucokinase regulatory protein(GCKR)gene have been linked to heightened susceptibility to T2DM and its associated complications.The clinical trial by Liu et al further elucidates the role of the GCKR rs780094 polymorphism in T2DM and nephropathy development.Their findings demonstrate that individuals carrying the CT or TT genotype at the GCKR rs780094 locus are at a higher risk of developing T2DM with albuminuria compared to those with the CC genotype.These findings highlight the importance of genetic testing and risk assessment in T2DM to develop effective preventive strategies and personalized treatment plans.展开更多
BACKGROUND The prevalence of metabolic dysfunction-associated fatty liver disease(MAFLD)is rapidly increasing,currently affecting approximately 25%of the global population.Liver fibrosis represents a crucial stage in ...BACKGROUND The prevalence of metabolic dysfunction-associated fatty liver disease(MAFLD)is rapidly increasing,currently affecting approximately 25%of the global population.Liver fibrosis represents a crucial stage in the development of MAFLD,with advanced liver fibrosis elevating the risks of cirrhosis and hepatocellular carcinoma.Simple serum markers are less effective in diagnosing liver fibrosis compared to more complex markers.However,imaging techniques like transient elastography face limitations in clinical application due to equipment and technical constraints.Consequently,it is imperative to identify a straightforward yet effective method for assessing MAFLD-associated liver fibrosis.AIM To investigate the predictive value of angiopoietin-like protein 8(ANGPTL8)in MAFLD and its progression.METHODS We analyzed 160 patients who underwent abdominal ultrasonography in the Endocrinology Department,Xiaogan Central Hospital affiliated to Wuhan University of Science and Technology,during September 2021-July 2022.Using abdominal ultrasonography and MAFLD diagnostic criteria,among the 160 patients,80 patients(50%)were diagnosed with MAFLD.The MAFLD group was divided into the liver fibrosis group(n=23)and non-liver fibrosis group(n=57)by using a cut-off fibrosis-4 index≥1.45.Logistical regression was used to analyze the risk of MAFLD and the risk factors for its progression.Receiver operating characteristic curves were used to evaluate the predictive value of serum ANGPTL8 in MAFLD and its progression.RESULTS Compared with non-MAFLD patients,MAFLD patients had higher serum ANGPTL8 and triglyceride-glucose(TyG)index(both P<0.05).Serum ANGPTL8(r=0.576,P<0.001)and TyG index(r=0.473,P<0.001)were positively correlated with MAFLD.Serum ANGPTL8 was a risk factor for MAFLD[odds ratio(OR):1.123,95%confidence interval(CI):1.066-1.184,P<0.001).Serum ANGPTL8 and ANGPTL8+TyG index predicted MAFLD[area under the curve(AUC):0.832 and 0.886,respectively;both P<0.05].Compared with MAFLD patients without fibrosis,those with fibrosis had higher serum ANGPTL8 and TyG index(both P<0.05),and both parameters were positively correlated with MAFLD-associated fibrosis.Elevated serum ANGPTL8(OR:1.093,95%CI:1.044-1.144,P<0.001)and TyG index(OR:2.383,95%CI:1.199-4.736,P<0.013)were risk factors for MAFLD-associated fibrosis.Serum ANGPTL8 and ANGPTL8+TyG index predicted MAFLD-associated fibrosis(AUC:0.812 and 0.835,respectively;both P<0.05).CONCLUSION The serum levels of ANGPTL8 are elevated and positively correlated with MAFLD.They can serve as predictors for the risk of MAFLD and liver fibrosis,with the ANGPTL8+TyG index potentially exhibiting even higher predictive value.展开更多
Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates ...Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates various physiological and pathological processes in the body.This study aimed to elucidate the relationship between PINK1/Parkin-regulated mitochondrial autophagy and KD-related myocardial injury.Methods A low Se and low protein animal model was established.One hundred Wistar rats were randomly divided into 5 groups(control group,low Se group,low protein group,low Se+low protein group,and corn from KD area group).The JC-1 method was used to detect the mitochondrial membrane potential(MMP).ELISA was used to detect serum creatine kinase MB(CK-MB),cardiac troponin I(cTnI),and mitochondrial-glutamicoxalacetic transaminase(M-GOT)levels.RT-PCR and Western blot analysis were used to detect the expression of PINK1,Parkin,sequestome 1(P62),and microtubule-associated proteins1A/1B light chain 3B(MAP1LC3B).Results The MMP was significantly decreased and the activity of CK-MB,cTnI,and M-GOT significantly increased in each experimental group(low Se group,low protein group,low Se+low protein group and corn from KD area group)compared with the control group(P<0.05 for all).The mRNA and protein expression levels of PINK1,Parkin and MAP1LC3B were profoundly increased,and those of P62 markedly decreased in the experimental groups compared with the control group(P<0.05 for all).Conclusion Low Se and low protein levels exacerbate myocardial damage in KD by affecting the PINK1/Parkin-mediated mitochondrial autophagy pathway.展开更多
Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signalin...Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research.展开更多
Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson s disease,but the regulato ry mechanism remains elusive.Prohibitin-2(PHB2)is a newly discove red autophagy receptor in the m...Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson s disease,but the regulato ry mechanism remains elusive.Prohibitin-2(PHB2)is a newly discove red autophagy receptor in the mitochondrial inner membrane,and its role in Parkinson’s disease remains unclear.Protein kinase R(PKR)-like endoplasmic reticulum kinase(PERK)is a factor that regulates cell fate during endoplasmic reticulum stress.Parkin is regulated by PERK and is a target of the unfolded protein response.It is unclear whether PERK regulates PHB2-mediated mitophagy thro ugh Parkin.In this study,we established a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of Parkinson’s disease.We used adeno-associated virus to knockdown PHB2 expression.Our res ults showed that loss of dopaminergic neurons and motor deficits were aggravated in the MPTP-induced mouse model of Parkinson’s disease.Ove rexpression of PHB2 inhibited these abnormalities.We also established a 1-methyl-4-phenylpyridine(MPP+)-induced SH-SY5Y cell model of Parkinson’s disease.We found that ove rexpression of Parkin increased co-localization of PHB2 and microtubule-associated protein 1 light chain 3,and promoted mitophagy.In addition,MPP+regulated Parkin involvement in PHB2-mediated mitophagy through phosphorylation of PERK.These findings suggest that PHB2 participates in the development of Parkinson’s disease by intera cting with endoplasmic reticulum stress and Parkin.展开更多
Non-alcoholic fatty liver disease(NAFLD)is associated with mutations in lipopolysaccharide-binding protein(LBP),but the underlying epigenetic mechanisms remain understudied.Herein,LBP^(-/-)rats with NAFLD were establi...Non-alcoholic fatty liver disease(NAFLD)is associated with mutations in lipopolysaccharide-binding protein(LBP),but the underlying epigenetic mechanisms remain understudied.Herein,LBP^(-/-)rats with NAFLD were established and used to conduct integrative targetingactive enhancer histone H3 lysine 27 acetylation(H3K27ac)chromatin immunoprecipitation coupled with high-throughput and transcriptomic sequencing analysis to explore the potential epigenetic pathomechanisms of active enhancers of NAFLD exacerbation upon LBP deficiency.Notably,LBP^(-/-)reduced the inflammatory response but markedly aggravated high-fat diet(HFD)-induced NAFLD in rats,with pronounced alterations in the histone acetylome and regulatory transcriptome.In total,1128 differential enhancer-target genes significantly enriched in cholesterol and fatty acid metabolism were identified between wild-type(WT)and LBP^(-/-)NAFLD rats.Based on integrative analysis,CCAAT/enhancer-binding proteinβ(C/EBPβ)was identified as a pivotal transcription factor(TF)and contributor to dysregulated histone acetylome H3K27ac,and the lipid metabolism gene SCD was identified as a downstream effector exacerbating NAFLD.This study not only broadens our understanding of the essential role of LBP in the pathogenesis of NAFLD from an epigenetics perspective but also identifies key TF C/EBPβand functional gene SCD as potential regulators and therapeutic targets.展开更多
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ...γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.展开更多
Irisin is a myokine that is generated by cleavage of the membrane protein fibronectin type Ⅲ domain-containing protein 5(FNDC5) in response to physical exercise. Studies reveal that irisin/FNDC5 has neuroprotective f...Irisin is a myokine that is generated by cleavage of the membrane protein fibronectin type Ⅲ domain-containing protein 5(FNDC5) in response to physical exercise. Studies reveal that irisin/FNDC5 has neuroprotective functions against Alzheimer's disease, the most common form of dementia in the elderly, by improving cognitive function and reducing amyloid-β and tau pathologies as well as neuroinflammation in cell culture or animal models of Alzheimer's disease. Although current and ongoing studies on irisin/FNDC5 show promising results, further mechanistic studies are required to clarify its potential as a meaningful therapeutic target for alleviating Alzheimer's disease. We recently found that irisin treatment reduces amyloid-β pathology by increasing the activity/levels of amyloid-β-degrading enzyme neprilysin secreted from astrocytes. Herein, we present an overview of irisin/FNDC5's protective roles and mechanisms against Alzheimer's disease.展开更多
Computational methods have significantly transformed biomedical research,offering a comprehensive exploration of disease mechanisms and molecular protein functions.This article reviews a spectrum of computational tools...Computational methods have significantly transformed biomedical research,offering a comprehensive exploration of disease mechanisms and molecular protein functions.This article reviews a spectrum of computational tools and network analysis databases that play a crucial role in identifying potential interactions and signaling networks contributing to the onset of disease states.The utilization of protein/gene interaction and genetic variation databases,coupled with pathway analysis can facilitate the identification of potential drug targets.By bridging the gap between molecular-level information and disease understanding,this review contributes insights into the impactful utilization of computational methods,paving the way for targeted interventions and therapeutic advancements in biomedical research.展开更多
Purpose of Review: Chronic kidney disease (CKD) is associated with a limited ability to excrete fluids, electrolytes, uremic toxins and other end-products of catabolism. Studies on adverse renal outcomes with dietary ...Purpose of Review: Chronic kidney disease (CKD) is associated with a limited ability to excrete fluids, electrolytes, uremic toxins and other end-products of catabolism. Studies on adverse renal outcomes with dietary patterns are limited. Methods: Comprehensive search in PubMed of papers published until June 2024 describing prospective cohort studies on renal nutritional therapy (RNT) with at least 3 years of follow up. Results: RNT should include adequate yet limited amounts of calories, fluids, protein, lipids, sodium, potassium, and phosphorus. RNT is an adjuvant to specific drug-therapy in 1) certain complications viz. fluid overload, anemia and renal osteodystrophy, and 2) specific kidney diseases viz. glomerulopathies, tubulopathies, polycystic kidney disease, calcium oxalates urolithiasis and cystinuria, as well as 3) types of renal failure viz acute and chronic and its treatment viz. hemodialysis, peritoneal and transplantation. Conclusion: RNT is patient-specific and should be systematically planned to delay the progression of CKD as well as to prevent and treat its complications.展开更多
Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primar...Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs,targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment.Metabolic abnormalities are commonly observed in patients with Alzheimer's disease.The liver is the primary peripheral organ involved in amyloid-beta metabolism,playing a crucial role in the pathophysiology of Alzheimer's disease.Notably,impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease.In this review,we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism.Furthermore,we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease.展开更多
Several promising plasma biomarker proteins,such as amyloid-β(Aβ),tau,neurofilament light chain,and glial fibrillary acidic protein,are widely used for the diagnosis of neurodegenerative diseases.However,little is k...Several promising plasma biomarker proteins,such as amyloid-β(Aβ),tau,neurofilament light chain,and glial fibrillary acidic protein,are widely used for the diagnosis of neurodegenerative diseases.However,little is known about the long-term stability of these biomarker proteins in plasma samples stored at-80°C.We aimed to explore how storage time would affect the diagnostic accuracy of these biomarkers using a large cohort.Plasma samples from 229 cognitively unimpaired individuals,encompassing healthy controls and those experiencing subjective cognitive decline,as well as 99 patients with cognitive impairment,comprising those with mild cognitive impairment and dementia,were acquired from the Sino Longitudinal Study on Cognitive Decline project.These samples were stored at-80°C for up to 6 years before being used in this study.Our results showed that plasma levels of Aβ42,Aβ40,neurofilament light chain,and glial fibrillary acidic protein were not significantly correlated with sample storage time.However,the level of total tau showed a negative correlation with sample storage time.Notably,in individuals without cognitive impairment,plasma levels of total protein and tau phosphorylated protein threonine 181(p-tau181)also showed a negative correlation with sample storage time.This was not observed in individuals with cognitive impairment.Consequently,we speculate that the diagnostic accuracy of plasma p-tau181 and the p-tau181 to total tau ratio may be influenced by sample storage time.Therefore,caution is advised when using these plasma biomarkers for the identification of neurodegenerative diseases,such as Alzheimer's disease.Furthermore,in cohort studies,it is important to consider the impact of storage time on the overall results.展开更多
BACKGROUND Metabolic dysfunction-associated steatotic liver disease(MASLD),particularly in the presence of liver fibrosis,increases the risk of cardiovascular morbidity and mortality,but the nature of the cardio-hepat...BACKGROUND Metabolic dysfunction-associated steatotic liver disease(MASLD),particularly in the presence of liver fibrosis,increases the risk of cardiovascular morbidity and mortality,but the nature of the cardio-hepatic interaction in the context type 2 diabetes mellitus(T2DM)is not fully understood.AIM To evaluate the changes in cardiac morphology and function in patients with T2DM and MASLD-associated liver fibrosis.METHODS T2DM patients with MASLD underwent a medical evaluation that included an assessment of lifestyle,anthropometric measurements,vital signs,an extensive laboratory panel,and a standard echocardiography.Liver fibrosis was evaluated using two scores[Fibrosis-4(FIB4)and Non-alcoholic fatty liver disease-Fibrosis Score(NFS)],and subjects were classified as having advanced fibrosis,no fibrosis,or an indeterminate risk.The correlations between structural and functional cardiac parameters and markers of liver fibrosis were evaluated through bivariate and multiple regression analyses.Statistical significance was set at P<0.05.RESULTS Data from 267 T2DM-MASLD subjects with complete assessment was analyzed.Patients with scores indicating advanced fibrosis exhibited higher interventricular septum and left ventricular(LV)posterior wall thickness,atrial diameters,LV end-systolic volume,LV mass index(LVMi),and epicardial adipose tissue thickness(EATT).Their mean ejection fraction(EF)was significantly lower(49.19%±5.62%vs 50.87%±5.14%vs 52.00%±3.25%;P=0.003),and a smaller proportion had an EF≥50%(49.40%vs 68.90%vs 84.21%;P=0.0017).Their total and mid LV wall motion score indexes were higher(P<0.05).Additionally,they had markers of diastolic dysfunction,with a higher E/e’ratio[9.64±4.10 vs 8.44(2.43-26.33)vs 7.35±2.62;P=0.026],and over 70%had lateral e’values<10 cm/second,though without significant differences between groups.In multiple regression analyses,FIB4 correlated with left atrium diameter(LAD;β=0.044;P<0.05),and NFS with both LAD(β=0.039;P<0.05)and right atrium diameter(β=0.041;P<0.01),Moreover,LVMi correlated positively with age and EATT(β=1.997;P=0.0008),and negatively with serum sex-hormone binding protein(SHBP)concentrations(β=-0.280;P=0.004).SHBP also correlated negatively with LAD(β=-0.036;P<0.05).CONCLUSION T2DM patients with markers of MASLD-related liver fibrosis exhibit lower EF and present indicators of diastolic dysfunction and cardiac hypertrophy.Additionally,LVMi and LAD correlated negatively with serum SHBP concentrations.展开更多
The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role i...The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover,remodeling,and proteostasis.In this review,we briefly describe the endoplasmic reticulum quality control system,and subsequently focus on the role of endoplasmic reticulum autophagy,emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements.We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases.In summary,this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders.This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.展开更多
Mitochondrial dysfunction is a significant pathological alte ration that occurs in Parkinson's disease(PD),and the Thr61lle(T61I)mutation in coiled-coil helix coiled-coil helix domain containing 2(CHCHD2),a crucia...Mitochondrial dysfunction is a significant pathological alte ration that occurs in Parkinson's disease(PD),and the Thr61lle(T61I)mutation in coiled-coil helix coiled-coil helix domain containing 2(CHCHD2),a crucial mitochondrial protein,has been reported to cause Parkinson's disease.FIFO-ATPase participates in the synthesis of cellular adenosine triphosphate(ATP)and plays a central role in mitochondrial energy metabolism.However,the specific roles of wild-type(WT)CHCHD2 and T611-mutant CHCHD2 in regulating F1FO-ATPase activity in Parkinson's disease,as well as whether CHCHD2 or CHCHD2 T61I affects mitochondrial function through regulating F1FO-ATPase activity,remain unclea r.Therefore,in this study,we expressed WT CHCHD2 and T61l-mutant CHCHD2 in an MPP^(+)-induced SH-SY5Y cell model of PD.We found that CHCHD2 protected mitochondria from developing MPP^(+)-induced dysfunction.Under normal conditions,ove rexpression of WT CHCHD2 promoted F1FO-ATPase assembly,while T61I-mutant CHCHD2 appeared to have lost the ability to regulate F1FO-ATPase assembly.In addition,mass spectrometry and immunoprecipitation showed that there was an interaction between CHCHD2 and F1FO-ATPase.Three weeks after transfection with AAV-CHCHD2 T61I,we intraperitoneally injected 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine into mice to establish an animal model of chronic Parkinson's disease and found that exogenous expression of the mutant protein worsened the behavioral deficits and dopaminergic neurodegeneration seen in this model.These findings suggest that WT CHCHD2 can alleviate mitochondrial dysfunction in PD by maintaining F1F0-ATPase structure and function.展开更多
BACKGROUND Non-alcoholic fatty liver disease(NAFLD)is a major health burden with an increasing global incidence.Unfortunately,the unavailability of knowledge underlying NAFLD pathogenesis inhibits effective preventive...BACKGROUND Non-alcoholic fatty liver disease(NAFLD)is a major health burden with an increasing global incidence.Unfortunately,the unavailability of knowledge underlying NAFLD pathogenesis inhibits effective preventive and therapeutic measures.AIM To explore the molecular mechanism of NAFLD.METHODS Whole genome sequencing(WGS)analysis was performed on liver tissues from patients with NAFLD(n=6)and patients with normal metabolic conditions(n=6)to identify the target genes.A NAFLD C57BL6/J mouse model induced by 16 wk of high-fat diet feeding and a hepatocyte-specific F-box only protein 2(FBXO2)overexpression mouse model were used for in vivo studies.Plasmid transfection,co-immunoprecipitation-based mass spectrometry assays,and ubiquitination in HepG2 cells and HEK293T cells were used for in vitro studies.RESULTS A total of 30982 genes were detected in WGS analysis,with 649 up-regulated and 178 down-regulated.Expression of FBXO2,an E3 ligase,was upregulated in the liver tissues of patients with NAFLD.Hepatocyte-specific FBXO2 overexpression facilitated NAFLD-associated phenotypes in mice.Overexpression of FBXO2 aggravated odium oleate(OA)-induced lipid accumulation in HepG2 cells,resulting in an abnormal expression of genes related to lipid metabolism,such as fatty acid synthase,peroxisome proliferator-activated receptor alpha,and so on.In contrast,knocking down FBXO2 in HepG2 cells significantly alleviated the OA-induced lipid accumulation and aberrant expression of lipid metabolism genes.The hydroxyl CoA dehydrogenase alpha subunit(HADHA),a protein involved in oxidative stress,was a target of FBXO2-mediated ubiquitination.FBXO2 directly bound to HADHA and facilitated its proteasomal degradation in HepG2 and HEK293T cells.Supplementation with HADHA alleviated lipid accumulation caused by FBXO2 overexpression in HepG2 cells.CONCLUSION FBXO2 exacerbates lipid accumulation by targeting HADHA and is a potential therapeutic target for NAFLD。展开更多
Haptoglobin(HP)is a liver glycoprotein that is actively synthesized during in-flammatory and hemolytic processes.It also has pro-oxidant and proinflam-matory properties,which are a function of its genotype.The genetic...Haptoglobin(HP)is a liver glycoprotein that is actively synthesized during in-flammatory and hemolytic processes.It also has pro-oxidant and proinflam-matory properties,which are a function of its genotype.The genetic polymorp-hism of the chains leads to synthesis of three phenotypes/proteins,which are related to the number and type of chains and their molecular weight,namely HP1-1,HP1-2 and HP2-2.Patients with HP2-2 have more vascular complications,while those with HP1-1 have fewer.HP is involved in the worsening of diseases,such as HP2-2 in aggravation of vaso-occlusive crises in sickle cell disease,and worsening of the pathophysiology of other diseases.In contrast,HP1-1 confers better protection against diseases.All of this suggests that further studies should be conducted,including experimental and analytical studies focused on de-monstrating the influence of different HP genotypes on individual clinical and hematological data.This would help in understanding the role played by this genetic polymorphism in the pathophysiology of diseases.展开更多
文摘The impact of apolipoprotein E(ApoE)isoforms on sporadic Alzheimer's disease has long been studied;however,the influences of apolipoprotein E gene(APOE)on healthy and pathological human brains are not fully understood.ApoE exists as three common isoforms(ApoE2,ApoE3,and ApoE4),which differ in two amino acid residues.Traditionally,ApoE binds cholesterol and phospholipids and ApoE isoforms display diffe rent affinities for their receptors,lipids transport and distribution in the brain and periphery.The role of ApoE in the human depends on ApoE isoforms,brain regions,aging,and neural injury.APOE E4 is the strongest genetic risk factor for sporadic Alzheimer's disease,considering its role in influencing amyloid-beta metabolism.The exact mechanisms by which APOE gene variants may increase or decrease Alzheimer's disease risk are not fully understood,but APOE was also known to affect directly and indirectly tau-mediated neurodegeneration,lipids metabolism,neurovascular unit,and microglial function.Consistent with the biological function of ApoE,ApoE4 isoform significantly alte red signaling pathways associated with cholesterol homeostasis,transport,and myelination.Also,the rare protective APOE variants confirm that ApoE plays an important role in Alzheimer's disease pathogenesis.The objectives of the present mini-review were to describe classical and new roles of various ApoE isoforms in Alzheimer's disease pathophysiology beyond the deposition of amyloid-beta and to establish a functional link between APOE,brain function,and memory,from a molecular to a clinical level.APOE genotype also exerted a heterogeneous effect on clinical Alzheimer's disease phenotype and its outcomes.Not only in learning and memory but also in neuro psychiatric symptoms that occur in a premorbid condition.Cla rifying the relationships between Alzheimer's disease-related pathology with neuropsychiatric symptoms,particularly suicidal ideation in Alzheimer's disease patients,may be useful for elucidating also the underlying pathophysiological process and its prognosis.Also,the effects of anti-amyloid-beta drugs,recently approved for the treatment of Alzheimer's disease,could be influenced by the APOE genotype.
基金supported by the National Key R&D Program of China,No.2021YFF0702203(to HYL)the National Natural Science Foundation of China,No.82101323(to TS)Preferred Foundation of Zhejiang Postdoctors,No.ZJ2021152(to TS).
文摘Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired elimination of these neurotoxic protein.Atypical parkinsonism,which has the same clinical presentation and neuropathology as Parkinson’s disease,expands the disease landscape within the continuum of Parkinson’s disease and related disorders.The glymphatic system is a waste clearance system in the brain,which is responsible for eliminating the neurotoxic proteins from the interstitial fluid.Impairment of the glymphatic system has been proposed as a significant contributor to the development and progression of neurodegenerative disease,as it exacerbates the aggregation of neurotoxic proteins and deteriorates neuronal damage.Therefore,impairment of the glymphatic system could be considered as the final common pathway to neurodegeneration.Previous evidence has provided initial insights into the potential effect of the impaired glymphatic system on Parkinson’s disease and related disorders;however,many unanswered questions remain.This review aims to provide a comprehensive summary of the growing literature on the glymphatic system in Parkinson’s disease and related disorders.The focus of this review is on identifying the manifestations and mechanisms of interplay between the glymphatic system and neurotoxic proteins,including loss of polarization of aquaporin-4 in astrocytic endfeet,sleep and circadian rhythms,neuroinflammation,astrogliosis,and gliosis.This review further delves into the underlying pathophysiology of the glymphatic system in Parkinson’s disease and related disorders,and the potential implications of targeting the glymphatic system as a novel and promising therapeutic strategy.
基金supported by the Grant for Development of New Faculty Staff,Ratchadaphiseksomphot Endowment Fund,Chula-longkorn University,Thailand(Grant No.:DNS64_047_33_003_1 to Patanachai K.Limpikirati)Grant for Development of New Scholar,Office of the Permanent Secretary,Ministry of Higher Ed-ucation,Science,Research and Innovation,Thailand(Grant No.:RGNS64_012 to Patanachai K.Limpikirati).
文摘In this review,we focus on providing basics and examples for each component of the protein therapeutic specifications to interested pharmacists and biopharmaceutical scientists with a goal to strengthen understanding in regulatory science and compliance.Pharmaceutical specifications comprise a list of important quality attributes for testing,references to use for test procedures,and appropriate acceptance criteria for the tests,and they are set up to ensure that when a drug product is administered to a patient,its intended therapeutic benefits and safety can be rendered appropriately.Conformance of drug substance or drug product to the specifications is achieved by testing an article according to the listed tests and analytical methods and obtaining test results that meet the acceptance criteria.Quality attributes are chosen to be tested based on their quality risk,and consideration should be given to the merit of the analytical methods which are associated with the acceptance criteria of the specifications.Acceptance criteria are set forth primarily based on efficacy and safety profiles,with an increasing attention noted for patient-centric specifications.Discussed in this work are related guidelines that support the biopharmaceutical specification setting,how to set the acceptance criteria,and examples of the quality attributes and the analytical methods from 60 articles and 23 pharmacopeial monographs.Outlooks are also explored on process analytical technologies and other orthogonal tools which are on-trend in biopharmaceutical characterization and quality control.
基金Supported by the Kuwait Foundation for the Advancement of Sciences(KFAS)and Dasman Diabetes Institute,No.RACB-2021-007.
文摘In this editorial,we comment on the article by Liu et al published in the recent issue of the World Journal of Diabetes(Relationship between GCKR gene rs780094 polymorphism and type 2 diabetes with albuminuria).Type 2 diabetes mellitus(T2DM)is a chronic disorder characterized by dysregulated glucose homeostasis.The persistent elevated blood glucose level in T2DM significantly increases the risk of developing severe complications,including cardiovascular disease,re-tinopathy,neuropathy,and nephropathy.T2DM arises from a complex interplay between genetic,epigenetic,and environmental factors.Global genomic studies have identified numerous genetic variations associated with an increased risk of T2DM.Specifically,variations within the glucokinase regulatory protein(GCKR)gene have been linked to heightened susceptibility to T2DM and its associated complications.The clinical trial by Liu et al further elucidates the role of the GCKR rs780094 polymorphism in T2DM and nephropathy development.Their findings demonstrate that individuals carrying the CT or TT genotype at the GCKR rs780094 locus are at a higher risk of developing T2DM with albuminuria compared to those with the CC genotype.These findings highlight the importance of genetic testing and risk assessment in T2DM to develop effective preventive strategies and personalized treatment plans.
基金Supported by Youth Talents Project of Joint Fund of Hubei Health Commission,No.WJ2019H170and Xiaogan Natural Science Project,No.XGKJ2020010033。
文摘BACKGROUND The prevalence of metabolic dysfunction-associated fatty liver disease(MAFLD)is rapidly increasing,currently affecting approximately 25%of the global population.Liver fibrosis represents a crucial stage in the development of MAFLD,with advanced liver fibrosis elevating the risks of cirrhosis and hepatocellular carcinoma.Simple serum markers are less effective in diagnosing liver fibrosis compared to more complex markers.However,imaging techniques like transient elastography face limitations in clinical application due to equipment and technical constraints.Consequently,it is imperative to identify a straightforward yet effective method for assessing MAFLD-associated liver fibrosis.AIM To investigate the predictive value of angiopoietin-like protein 8(ANGPTL8)in MAFLD and its progression.METHODS We analyzed 160 patients who underwent abdominal ultrasonography in the Endocrinology Department,Xiaogan Central Hospital affiliated to Wuhan University of Science and Technology,during September 2021-July 2022.Using abdominal ultrasonography and MAFLD diagnostic criteria,among the 160 patients,80 patients(50%)were diagnosed with MAFLD.The MAFLD group was divided into the liver fibrosis group(n=23)and non-liver fibrosis group(n=57)by using a cut-off fibrosis-4 index≥1.45.Logistical regression was used to analyze the risk of MAFLD and the risk factors for its progression.Receiver operating characteristic curves were used to evaluate the predictive value of serum ANGPTL8 in MAFLD and its progression.RESULTS Compared with non-MAFLD patients,MAFLD patients had higher serum ANGPTL8 and triglyceride-glucose(TyG)index(both P<0.05).Serum ANGPTL8(r=0.576,P<0.001)and TyG index(r=0.473,P<0.001)were positively correlated with MAFLD.Serum ANGPTL8 was a risk factor for MAFLD[odds ratio(OR):1.123,95%confidence interval(CI):1.066-1.184,P<0.001).Serum ANGPTL8 and ANGPTL8+TyG index predicted MAFLD[area under the curve(AUC):0.832 and 0.886,respectively;both P<0.05].Compared with MAFLD patients without fibrosis,those with fibrosis had higher serum ANGPTL8 and TyG index(both P<0.05),and both parameters were positively correlated with MAFLD-associated fibrosis.Elevated serum ANGPTL8(OR:1.093,95%CI:1.044-1.144,P<0.001)and TyG index(OR:2.383,95%CI:1.199-4.736,P<0.013)were risk factors for MAFLD-associated fibrosis.Serum ANGPTL8 and ANGPTL8+TyG index predicted MAFLD-associated fibrosis(AUC:0.812 and 0.835,respectively;both P<0.05).CONCLUSION The serum levels of ANGPTL8 are elevated and positively correlated with MAFLD.They can serve as predictors for the risk of MAFLD and liver fibrosis,with the ANGPTL8+TyG index potentially exhibiting even higher predictive value.
基金supported by the Natural Science Foundation of Heilongjiang Province(No.LH2021H009).
文摘Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates various physiological and pathological processes in the body.This study aimed to elucidate the relationship between PINK1/Parkin-regulated mitochondrial autophagy and KD-related myocardial injury.Methods A low Se and low protein animal model was established.One hundred Wistar rats were randomly divided into 5 groups(control group,low Se group,low protein group,low Se+low protein group,and corn from KD area group).The JC-1 method was used to detect the mitochondrial membrane potential(MMP).ELISA was used to detect serum creatine kinase MB(CK-MB),cardiac troponin I(cTnI),and mitochondrial-glutamicoxalacetic transaminase(M-GOT)levels.RT-PCR and Western blot analysis were used to detect the expression of PINK1,Parkin,sequestome 1(P62),and microtubule-associated proteins1A/1B light chain 3B(MAP1LC3B).Results The MMP was significantly decreased and the activity of CK-MB,cTnI,and M-GOT significantly increased in each experimental group(low Se group,low protein group,low Se+low protein group and corn from KD area group)compared with the control group(P<0.05 for all).The mRNA and protein expression levels of PINK1,Parkin and MAP1LC3B were profoundly increased,and those of P62 markedly decreased in the experimental groups compared with the control group(P<0.05 for all).Conclusion Low Se and low protein levels exacerbate myocardial damage in KD by affecting the PINK1/Parkin-mediated mitochondrial autophagy pathway.
基金supported by the National Natural Science Foundation of China,Nos.82230042 and 81930029(to ZY),U2004201(to FG and RYP)the China Postdoctoral Science Foundation,No.2020M683748(to RYP)。
文摘Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research.
基金supported by the Key Science and Technology Research of Henan Province,No.222102310351(to JW)Luoyang 2022 Medical and Health Guiding Science and Technology Plan Project,No.2022057Y(to JY)Henan Medical Science and Technology Research Program Province-Ministry Co-sponsorship,No.SBGJ202002099(to JY)。
文摘Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson s disease,but the regulato ry mechanism remains elusive.Prohibitin-2(PHB2)is a newly discove red autophagy receptor in the mitochondrial inner membrane,and its role in Parkinson’s disease remains unclear.Protein kinase R(PKR)-like endoplasmic reticulum kinase(PERK)is a factor that regulates cell fate during endoplasmic reticulum stress.Parkin is regulated by PERK and is a target of the unfolded protein response.It is unclear whether PERK regulates PHB2-mediated mitophagy thro ugh Parkin.In this study,we established a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of Parkinson’s disease.We used adeno-associated virus to knockdown PHB2 expression.Our res ults showed that loss of dopaminergic neurons and motor deficits were aggravated in the MPTP-induced mouse model of Parkinson’s disease.Ove rexpression of PHB2 inhibited these abnormalities.We also established a 1-methyl-4-phenylpyridine(MPP+)-induced SH-SY5Y cell model of Parkinson’s disease.We found that ove rexpression of Parkin increased co-localization of PHB2 and microtubule-associated protein 1 light chain 3,and promoted mitophagy.In addition,MPP+regulated Parkin involvement in PHB2-mediated mitophagy through phosphorylation of PERK.These findings suggest that PHB2 participates in the development of Parkinson’s disease by intera cting with endoplasmic reticulum stress and Parkin.
基金supported by the National Natural Science Foundation of China(81971875,82300661)Natural Science Foundation of Anhui province(2308085QH246)+3 种基金Natural Science Foundation of the Anhui Higher Education Institutions(KJ2021A0205)Basic and Clinical Cooperative Research Program of Anhui Medical University(2019xkjT002,2019xkjT022,2022xkjT013)Talent Training Program,School of Basic Medical Sciences,Anhui Medical University(2022YPJH102)National College Students Innovation and Entrepreneurship Training Program of China(202210366024)。
文摘Non-alcoholic fatty liver disease(NAFLD)is associated with mutations in lipopolysaccharide-binding protein(LBP),but the underlying epigenetic mechanisms remain understudied.Herein,LBP^(-/-)rats with NAFLD were established and used to conduct integrative targetingactive enhancer histone H3 lysine 27 acetylation(H3K27ac)chromatin immunoprecipitation coupled with high-throughput and transcriptomic sequencing analysis to explore the potential epigenetic pathomechanisms of active enhancers of NAFLD exacerbation upon LBP deficiency.Notably,LBP^(-/-)reduced the inflammatory response but markedly aggravated high-fat diet(HFD)-induced NAFLD in rats,with pronounced alterations in the histone acetylome and regulatory transcriptome.In total,1128 differential enhancer-target genes significantly enriched in cholesterol and fatty acid metabolism were identified between wild-type(WT)and LBP^(-/-)NAFLD rats.Based on integrative analysis,CCAAT/enhancer-binding proteinβ(C/EBPβ)was identified as a pivotal transcription factor(TF)and contributor to dysregulated histone acetylome H3K27ac,and the lipid metabolism gene SCD was identified as a downstream effector exacerbating NAFLD.This study not only broadens our understanding of the essential role of LBP in the pathogenesis of NAFLD from an epigenetics perspective but also identifies key TF C/EBPβand functional gene SCD as potential regulators and therapeutic targets.
基金supported in part by Award 2121063 from National Science Foundation(to YM)AG66986 from the National Institutes of Health(to MSW).
文摘γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.
基金supported by Cure Alzheimer’s Fund (to RET and SHC)JPB Foundation (to RET),and R56AG072054 (to SHC)。
文摘Irisin is a myokine that is generated by cleavage of the membrane protein fibronectin type Ⅲ domain-containing protein 5(FNDC5) in response to physical exercise. Studies reveal that irisin/FNDC5 has neuroprotective functions against Alzheimer's disease, the most common form of dementia in the elderly, by improving cognitive function and reducing amyloid-β and tau pathologies as well as neuroinflammation in cell culture or animal models of Alzheimer's disease. Although current and ongoing studies on irisin/FNDC5 show promising results, further mechanistic studies are required to clarify its potential as a meaningful therapeutic target for alleviating Alzheimer's disease. We recently found that irisin treatment reduces amyloid-β pathology by increasing the activity/levels of amyloid-β-degrading enzyme neprilysin secreted from astrocytes. Herein, we present an overview of irisin/FNDC5's protective roles and mechanisms against Alzheimer's disease.
基金This work was supported by EU funding within the NextGenerationEU-MUR PNRR Extended Partnership Initiative on Emerging Infectious Diseases(Project No.PE00000007,INF-ACT)。
文摘Computational methods have significantly transformed biomedical research,offering a comprehensive exploration of disease mechanisms and molecular protein functions.This article reviews a spectrum of computational tools and network analysis databases that play a crucial role in identifying potential interactions and signaling networks contributing to the onset of disease states.The utilization of protein/gene interaction and genetic variation databases,coupled with pathway analysis can facilitate the identification of potential drug targets.By bridging the gap between molecular-level information and disease understanding,this review contributes insights into the impactful utilization of computational methods,paving the way for targeted interventions and therapeutic advancements in biomedical research.
文摘Purpose of Review: Chronic kidney disease (CKD) is associated with a limited ability to excrete fluids, electrolytes, uremic toxins and other end-products of catabolism. Studies on adverse renal outcomes with dietary patterns are limited. Methods: Comprehensive search in PubMed of papers published until June 2024 describing prospective cohort studies on renal nutritional therapy (RNT) with at least 3 years of follow up. Results: RNT should include adequate yet limited amounts of calories, fluids, protein, lipids, sodium, potassium, and phosphorus. RNT is an adjuvant to specific drug-therapy in 1) certain complications viz. fluid overload, anemia and renal osteodystrophy, and 2) specific kidney diseases viz. glomerulopathies, tubulopathies, polycystic kidney disease, calcium oxalates urolithiasis and cystinuria, as well as 3) types of renal failure viz acute and chronic and its treatment viz. hemodialysis, peritoneal and transplantation. Conclusion: RNT is patient-specific and should be systematically planned to delay the progression of CKD as well as to prevent and treat its complications.
基金financially supported by the Science and Technology Innovation Program of Hunan Province,No.2022RC1220(to WP)China Postdoctoral Science Foundation,No.2022M711733(to ZZ)+2 种基金the National Natural Science Foundation of China,No.82160920(to ZZ)Hebei Postdoctoral Scientific Research Project,No.B2022003040(to ZZ)Hunan Flagship Department of Integrated Traditional Chinese and Western Medicine(to WP)。
文摘Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs,targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment.Metabolic abnormalities are commonly observed in patients with Alzheimer's disease.The liver is the primary peripheral organ involved in amyloid-beta metabolism,playing a crucial role in the pathophysiology of Alzheimer's disease.Notably,impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease.In this review,we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism.Furthermore,we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease.
基金supported by the National Key Research&Development Program of China,Nos.2021YFC2501205(to YC),2022YFC24069004(to JL)the STI2030-Major Project,Nos.2021ZD0201101(to YC),2022ZD0211800(to YH)+2 种基金the National Natural Science Foundation of China(Major International Joint Research Project),No.82020108013(to YH)the Sino-German Center for Research Promotion,No.M-0759(to YH)a grant from Beijing Municipal Science&Technology Commission(Beijing Brain Initiative),No.Z201100005520018(to JL)。
文摘Several promising plasma biomarker proteins,such as amyloid-β(Aβ),tau,neurofilament light chain,and glial fibrillary acidic protein,are widely used for the diagnosis of neurodegenerative diseases.However,little is known about the long-term stability of these biomarker proteins in plasma samples stored at-80°C.We aimed to explore how storage time would affect the diagnostic accuracy of these biomarkers using a large cohort.Plasma samples from 229 cognitively unimpaired individuals,encompassing healthy controls and those experiencing subjective cognitive decline,as well as 99 patients with cognitive impairment,comprising those with mild cognitive impairment and dementia,were acquired from the Sino Longitudinal Study on Cognitive Decline project.These samples were stored at-80°C for up to 6 years before being used in this study.Our results showed that plasma levels of Aβ42,Aβ40,neurofilament light chain,and glial fibrillary acidic protein were not significantly correlated with sample storage time.However,the level of total tau showed a negative correlation with sample storage time.Notably,in individuals without cognitive impairment,plasma levels of total protein and tau phosphorylated protein threonine 181(p-tau181)also showed a negative correlation with sample storage time.This was not observed in individuals with cognitive impairment.Consequently,we speculate that the diagnostic accuracy of plasma p-tau181 and the p-tau181 to total tau ratio may be influenced by sample storage time.Therefore,caution is advised when using these plasma biomarkers for the identification of neurodegenerative diseases,such as Alzheimer's disease.Furthermore,in cohort studies,it is important to consider the impact of storage time on the overall results.
基金Supported by the University of Medicine,Pharmacy,Science and Technology“George Emil Palade”of Târgu MureșResearch Grant,No.10126/5/17.12.2020.
文摘BACKGROUND Metabolic dysfunction-associated steatotic liver disease(MASLD),particularly in the presence of liver fibrosis,increases the risk of cardiovascular morbidity and mortality,but the nature of the cardio-hepatic interaction in the context type 2 diabetes mellitus(T2DM)is not fully understood.AIM To evaluate the changes in cardiac morphology and function in patients with T2DM and MASLD-associated liver fibrosis.METHODS T2DM patients with MASLD underwent a medical evaluation that included an assessment of lifestyle,anthropometric measurements,vital signs,an extensive laboratory panel,and a standard echocardiography.Liver fibrosis was evaluated using two scores[Fibrosis-4(FIB4)and Non-alcoholic fatty liver disease-Fibrosis Score(NFS)],and subjects were classified as having advanced fibrosis,no fibrosis,or an indeterminate risk.The correlations between structural and functional cardiac parameters and markers of liver fibrosis were evaluated through bivariate and multiple regression analyses.Statistical significance was set at P<0.05.RESULTS Data from 267 T2DM-MASLD subjects with complete assessment was analyzed.Patients with scores indicating advanced fibrosis exhibited higher interventricular septum and left ventricular(LV)posterior wall thickness,atrial diameters,LV end-systolic volume,LV mass index(LVMi),and epicardial adipose tissue thickness(EATT).Their mean ejection fraction(EF)was significantly lower(49.19%±5.62%vs 50.87%±5.14%vs 52.00%±3.25%;P=0.003),and a smaller proportion had an EF≥50%(49.40%vs 68.90%vs 84.21%;P=0.0017).Their total and mid LV wall motion score indexes were higher(P<0.05).Additionally,they had markers of diastolic dysfunction,with a higher E/e’ratio[9.64±4.10 vs 8.44(2.43-26.33)vs 7.35±2.62;P=0.026],and over 70%had lateral e’values<10 cm/second,though without significant differences between groups.In multiple regression analyses,FIB4 correlated with left atrium diameter(LAD;β=0.044;P<0.05),and NFS with both LAD(β=0.039;P<0.05)and right atrium diameter(β=0.041;P<0.01),Moreover,LVMi correlated positively with age and EATT(β=1.997;P=0.0008),and negatively with serum sex-hormone binding protein(SHBP)concentrations(β=-0.280;P=0.004).SHBP also correlated negatively with LAD(β=-0.036;P<0.05).CONCLUSION T2DM patients with markers of MASLD-related liver fibrosis exhibit lower EF and present indicators of diastolic dysfunction and cardiac hypertrophy.Additionally,LVMi and LAD correlated negatively with serum SHBP concentrations.
基金supported by the National Natural Science Foundation of China,Nos.92049120 and 81870897STI2030-Major Projects,No.2021ZD0204001+6 种基金Guangdong Key Project for Development of New Tools for the Diagnosis and Treatment of Autism,No.2018B030335001the Natural Science Foundation of Jiangsu Province,No.BK20181436the National Major Scientific and Technological Special Project for Significant New Drug Development,No.2019ZX09301102the Discipline Construction Program of the Second Affiliated Hospital of Soochow University,No.XKTJ-TD202003Sino-German Cooperation Mobility Programme,No.M-0679the Science and Technology Project of Suzhou,No.SKY2022161Research Project of Neurological Diseases of the Second Affiliated Hospital of Soochow University Medical Center,No.ND2023A01(all to QHM)。
文摘The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover,remodeling,and proteostasis.In this review,we briefly describe the endoplasmic reticulum quality control system,and subsequently focus on the role of endoplasmic reticulum autophagy,emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements.We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases.In summary,this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders.This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.
基金supported by the National Natural Science Foundation of China(Youth Program),No.81901282(to XC)the National Natural Science Foundation of China,Nos.81401416(to PX),81870992(to PX),81870856(to XC and MZ)+3 种基金Guangdong Basic and Applied Basic Research Foundation the Science Foundation,No.2019A1515011189(to XC)Central Government Guiding Local Science and Technology Development Projects,No.ZYYD2022C17(to PX)Key Project of Guangzhou Health Commission,No.2019-ZD-09(to PX)Science and Technology Planning Project of Guangzhou,Nos.202102020029(to XC),202102010010(to PX)。
文摘Mitochondrial dysfunction is a significant pathological alte ration that occurs in Parkinson's disease(PD),and the Thr61lle(T61I)mutation in coiled-coil helix coiled-coil helix domain containing 2(CHCHD2),a crucial mitochondrial protein,has been reported to cause Parkinson's disease.FIFO-ATPase participates in the synthesis of cellular adenosine triphosphate(ATP)and plays a central role in mitochondrial energy metabolism.However,the specific roles of wild-type(WT)CHCHD2 and T611-mutant CHCHD2 in regulating F1FO-ATPase activity in Parkinson's disease,as well as whether CHCHD2 or CHCHD2 T61I affects mitochondrial function through regulating F1FO-ATPase activity,remain unclea r.Therefore,in this study,we expressed WT CHCHD2 and T61l-mutant CHCHD2 in an MPP^(+)-induced SH-SY5Y cell model of PD.We found that CHCHD2 protected mitochondria from developing MPP^(+)-induced dysfunction.Under normal conditions,ove rexpression of WT CHCHD2 promoted F1FO-ATPase assembly,while T61I-mutant CHCHD2 appeared to have lost the ability to regulate F1FO-ATPase assembly.In addition,mass spectrometry and immunoprecipitation showed that there was an interaction between CHCHD2 and F1FO-ATPase.Three weeks after transfection with AAV-CHCHD2 T61I,we intraperitoneally injected 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine into mice to establish an animal model of chronic Parkinson's disease and found that exogenous expression of the mutant protein worsened the behavioral deficits and dopaminergic neurodegeneration seen in this model.These findings suggest that WT CHCHD2 can alleviate mitochondrial dysfunction in PD by maintaining F1F0-ATPase structure and function.
基金the National Natural Science Foundation of China,No.82070869 and 82270914.
文摘BACKGROUND Non-alcoholic fatty liver disease(NAFLD)is a major health burden with an increasing global incidence.Unfortunately,the unavailability of knowledge underlying NAFLD pathogenesis inhibits effective preventive and therapeutic measures.AIM To explore the molecular mechanism of NAFLD.METHODS Whole genome sequencing(WGS)analysis was performed on liver tissues from patients with NAFLD(n=6)and patients with normal metabolic conditions(n=6)to identify the target genes.A NAFLD C57BL6/J mouse model induced by 16 wk of high-fat diet feeding and a hepatocyte-specific F-box only protein 2(FBXO2)overexpression mouse model were used for in vivo studies.Plasmid transfection,co-immunoprecipitation-based mass spectrometry assays,and ubiquitination in HepG2 cells and HEK293T cells were used for in vitro studies.RESULTS A total of 30982 genes were detected in WGS analysis,with 649 up-regulated and 178 down-regulated.Expression of FBXO2,an E3 ligase,was upregulated in the liver tissues of patients with NAFLD.Hepatocyte-specific FBXO2 overexpression facilitated NAFLD-associated phenotypes in mice.Overexpression of FBXO2 aggravated odium oleate(OA)-induced lipid accumulation in HepG2 cells,resulting in an abnormal expression of genes related to lipid metabolism,such as fatty acid synthase,peroxisome proliferator-activated receptor alpha,and so on.In contrast,knocking down FBXO2 in HepG2 cells significantly alleviated the OA-induced lipid accumulation and aberrant expression of lipid metabolism genes.The hydroxyl CoA dehydrogenase alpha subunit(HADHA),a protein involved in oxidative stress,was a target of FBXO2-mediated ubiquitination.FBXO2 directly bound to HADHA and facilitated its proteasomal degradation in HepG2 and HEK293T cells.Supplementation with HADHA alleviated lipid accumulation caused by FBXO2 overexpression in HepG2 cells.CONCLUSION FBXO2 exacerbates lipid accumulation by targeting HADHA and is a potential therapeutic target for NAFLD。
文摘Haptoglobin(HP)is a liver glycoprotein that is actively synthesized during in-flammatory and hemolytic processes.It also has pro-oxidant and proinflam-matory properties,which are a function of its genotype.The genetic polymorp-hism of the chains leads to synthesis of three phenotypes/proteins,which are related to the number and type of chains and their molecular weight,namely HP1-1,HP1-2 and HP2-2.Patients with HP2-2 have more vascular complications,while those with HP1-1 have fewer.HP is involved in the worsening of diseases,such as HP2-2 in aggravation of vaso-occlusive crises in sickle cell disease,and worsening of the pathophysiology of other diseases.In contrast,HP1-1 confers better protection against diseases.All of this suggests that further studies should be conducted,including experimental and analytical studies focused on de-monstrating the influence of different HP genotypes on individual clinical and hematological data.This would help in understanding the role played by this genetic polymorphism in the pathophysiology of diseases.