Carbon sequestration in forests is of great interest due to concerns about global climate change.Carbon storage rates depend on ecosystem fluxes(photosynthesis and ecosystem respiration),typically quantified as net ...Carbon sequestration in forests is of great interest due to concerns about global climate change.Carbon storage rates depend on ecosystem fluxes(photosynthesis and ecosystem respiration),typically quantified as net ecosystem exchange(NEE).Methods to estimate forest NEE without intensive site sampling are needed to accurately assess rates of carbon sequestration at stand-level and larger scales.We produced spatially-explicit estimates of NEE for 9 770 ha of slash pine(Pinus elliottii) plantations in North-Central Florida for a single year by coupling remote sensing-based estimates of leaf area index(LAI) with a process-based growth simulation model.LAI estimates produced from a neural-network modeling of ground plot and Landsat TM satellite data had a mean of 1.06(range 0-3.93,including forest edges).Using the neural network LAI values as inputs,the slash pine simulation model(SPM2) estimates of NEE ranged from-5.52 to 11.06 Mg·ha^-1·a^-1with a mean of 3.47 Mg·ha^-1·a^-1Total carbon storage for the year was 33920 t,or about 3.5 tons per hectare.Both estimated LAI and NEE were highly sensitive to fertilization.展开更多
During 1991~1995, the growth responses of young slash pine to N, P and K fertilizers and rational rate and ratio of fertilizers in yellow-red soil at Fengshushan Forest Farm, Jiangxi Province were studied. N fertilize...During 1991~1995, the growth responses of young slash pine to N, P and K fertilizers and rational rate and ratio of fertilizers in yellow-red soil at Fengshushan Forest Farm, Jiangxi Province were studied. N fertilizer decreased the growth of slash pine, while P not only significantly improved the increment of bottom diameter, height and crown diameter, but also caused earlier canopy closure of the stand. It also had a sustainable effect in the next two years. Slash pine had the most significant response to the treatment of 200 kg P2O5 ha-1, in which tree height, bottom diameter and crown diameter (EW and SN) were increased by 22%, 35%, 20% and 18% in 1994, 21%, 25%, 10% and 10% in 1995, respectively, compared to the control.Although there was no remarkable response to K fertilizer, good growth response to the application of 100 kg P2O5 plus 100 kg K2O ha-1 existed and tree height, bottom diameter and crown diameter (EW and SN)were increased by 31%, 14%, 23% and 21%, respectively, in 1993, compared to the control.展开更多
Slash pine(Pinus elliottii Engelm.var.elliottii)is a resin-producing species grown worldwide for significant economic benefits for wood production.Resin tapping cre-ates a carbon sink at the expense of carbon allocati...Slash pine(Pinus elliottii Engelm.var.elliottii)is a resin-producing species grown worldwide for significant economic benefits for wood production.Resin tapping cre-ates a carbon sink at the expense of carbon allocation for growth and consequently,wood production may be reduced.Non-structural carbohydrates comprising starch and sugars stored in plant organs,may serve as intermediate pools between assimilation and utilisation.However,the effect of resin tapping between tree growth and non-structural carbo-hydrates is not well understood.This study investigated(1)the effects of resin tapping on radial growth,(2)the effects of resin tapping on non-structural carbohydrate pools in different compartments,and(3)the feasibility of resin pro-duction without disruption of tree growth.Twenty one-year-old slash pines were subjected to resin tapping over two suc-cessive years.Non-structural carbohydrate concentrations in needles,branches,stem phloem,and roots of tapped and untapped trees in summer and winter were determined after the second year of resin harvest.The results showed that tapping had no significant effects on annual increments.Starch was the dominant non-structural carbohydrate frac-tion,regardless of tissues and season,and constituted up to 99%of the total non-structural carbohydrates in the phloem and roots.Glucose and fructose were the dominant sugars;sucrose was negligible.Compared with the controls,tapped trees showed 26%lower non-structural carbohydrate concen-tration in the phloem above the tapping wound in summer,which was attributable to the decreased abundance of starch,glucose,fructose,and sucrose.In winter,the altered non-structural carbohydrate profiles in the phloem above the tap-ping wounding were minimised as a result of recovery of the sugar concentrations.In contrast to free sugars,which accu-mulated substantially in needles and branches during winter,starch was enriched in the phloem,roots,and current-year needles.The results provide evidence for a localised effect of resin tapping,and highlight the observation that resin extrac-tion does not always cause a sacrifice in wood growth under a moderate resin-tapping intensity in slash pine plantations.展开更多
The longleaf pine(Pinus palustris Mill.)ecosystem is an endangered ecosystem in the southeastern USA,and efforts to restore the species are ongoing.However,in recent decades,the region has experienced drastic fluctuat...The longleaf pine(Pinus palustris Mill.)ecosystem is an endangered ecosystem in the southeastern USA,and efforts to restore the species are ongoing.However,in recent decades,the region has experienced drastic fluctuations between wet and dry growing season conditions from year to year,and it is not fully understood how these fluctuations have influenced the growth of P.palustris.To address this topic,we cored P.palustris trees in woodlands of southwest Georgia and used dendrochronology techniques to determine how climate fluctuations have influenced the growth and drought resilience of P.palustris.We also cored slash pine(Pinus elliottii Engelm.)trees in the same woodlands to compare growth between species.While P.palustris growth was less impacted by adverse climate conditions compared to P.elliottii,the strength of correlations between P.palustris growth and temperature,precipitation,and Palmer Drought Severity Index(PDSI)changed over time.In recent decades,climate conditions during the growing season became more influential on P.palustris growth than the previous year's conditions.This is concerning given that drought severity during the growing season has been increasing.Our results also indicate that P.palustris was less resilient to droughts during the 2000s and 2010s than to those of the 1950s.Under this new climate paradigm,our results suggest that P.palustris might be more susceptible to growth reductions and less resistant to droughts than once expected.This work highlights the importance of understanding the impact of novel climate conditions on P.palustris and has implications for restoration efforts,such as using silvicultural treatments that reduce tree vulnerability to drought(e.g.,thinning)and promote other climate-adapted species in mixture with P.palustris.展开更多
基金supported by the United States Forest Service and the Forest Biology Research Cooperative at the University of Florida
文摘Carbon sequestration in forests is of great interest due to concerns about global climate change.Carbon storage rates depend on ecosystem fluxes(photosynthesis and ecosystem respiration),typically quantified as net ecosystem exchange(NEE).Methods to estimate forest NEE without intensive site sampling are needed to accurately assess rates of carbon sequestration at stand-level and larger scales.We produced spatially-explicit estimates of NEE for 9 770 ha of slash pine(Pinus elliottii) plantations in North-Central Florida for a single year by coupling remote sensing-based estimates of leaf area index(LAI) with a process-based growth simulation model.LAI estimates produced from a neural-network modeling of ground plot and Landsat TM satellite data had a mean of 1.06(range 0-3.93,including forest edges).Using the neural network LAI values as inputs,the slash pine simulation model(SPM2) estimates of NEE ranged from-5.52 to 11.06 Mg·ha^-1·a^-1with a mean of 3.47 Mg·ha^-1·a^-1Total carbon storage for the year was 33920 t,or about 3.5 tons per hectare.Both estimated LAI and NEE were highly sensitive to fertilization.
文摘During 1991~1995, the growth responses of young slash pine to N, P and K fertilizers and rational rate and ratio of fertilizers in yellow-red soil at Fengshushan Forest Farm, Jiangxi Province were studied. N fertilizer decreased the growth of slash pine, while P not only significantly improved the increment of bottom diameter, height and crown diameter, but also caused earlier canopy closure of the stand. It also had a sustainable effect in the next two years. Slash pine had the most significant response to the treatment of 200 kg P2O5 ha-1, in which tree height, bottom diameter and crown diameter (EW and SN) were increased by 22%, 35%, 20% and 18% in 1994, 21%, 25%, 10% and 10% in 1995, respectively, compared to the control.Although there was no remarkable response to K fertilizer, good growth response to the application of 100 kg P2O5 plus 100 kg K2O ha-1 existed and tree height, bottom diameter and crown diameter (EW and SN)were increased by 31%, 14%, 23% and 21%, respectively, in 1993, compared to the control.
基金The work was supported by the General Program of the National Natural Science Foundation of China(31,470,635)the Fundamental Research Funds of the Chinese Academy of Forestry(No.CAFYBB2017ZX001-3).
文摘Slash pine(Pinus elliottii Engelm.var.elliottii)is a resin-producing species grown worldwide for significant economic benefits for wood production.Resin tapping cre-ates a carbon sink at the expense of carbon allocation for growth and consequently,wood production may be reduced.Non-structural carbohydrates comprising starch and sugars stored in plant organs,may serve as intermediate pools between assimilation and utilisation.However,the effect of resin tapping between tree growth and non-structural carbo-hydrates is not well understood.This study investigated(1)the effects of resin tapping on radial growth,(2)the effects of resin tapping on non-structural carbohydrate pools in different compartments,and(3)the feasibility of resin pro-duction without disruption of tree growth.Twenty one-year-old slash pines were subjected to resin tapping over two suc-cessive years.Non-structural carbohydrate concentrations in needles,branches,stem phloem,and roots of tapped and untapped trees in summer and winter were determined after the second year of resin harvest.The results showed that tapping had no significant effects on annual increments.Starch was the dominant non-structural carbohydrate frac-tion,regardless of tissues and season,and constituted up to 99%of the total non-structural carbohydrates in the phloem and roots.Glucose and fructose were the dominant sugars;sucrose was negligible.Compared with the controls,tapped trees showed 26%lower non-structural carbohydrate concen-tration in the phloem above the tapping wound in summer,which was attributable to the decreased abundance of starch,glucose,fructose,and sucrose.In winter,the altered non-structural carbohydrate profiles in the phloem above the tap-ping wounding were minimised as a result of recovery of the sugar concentrations.In contrast to free sugars,which accu-mulated substantially in needles and branches during winter,starch was enriched in the phloem,roots,and current-year needles.The results provide evidence for a localised effect of resin tapping,and highlight the observation that resin extrac-tion does not always cause a sacrifice in wood growth under a moderate resin-tapping intensity in slash pine plantations.
基金funded through a Ph D scholarship (2021.05104.BD) funded by the Portuguese Foundation for Science and Technology (FCT)a Fulbright grant with the support of FCTsupported by The Jones Center at Ichauway
文摘The longleaf pine(Pinus palustris Mill.)ecosystem is an endangered ecosystem in the southeastern USA,and efforts to restore the species are ongoing.However,in recent decades,the region has experienced drastic fluctuations between wet and dry growing season conditions from year to year,and it is not fully understood how these fluctuations have influenced the growth of P.palustris.To address this topic,we cored P.palustris trees in woodlands of southwest Georgia and used dendrochronology techniques to determine how climate fluctuations have influenced the growth and drought resilience of P.palustris.We also cored slash pine(Pinus elliottii Engelm.)trees in the same woodlands to compare growth between species.While P.palustris growth was less impacted by adverse climate conditions compared to P.elliottii,the strength of correlations between P.palustris growth and temperature,precipitation,and Palmer Drought Severity Index(PDSI)changed over time.In recent decades,climate conditions during the growing season became more influential on P.palustris growth than the previous year's conditions.This is concerning given that drought severity during the growing season has been increasing.Our results also indicate that P.palustris was less resilient to droughts during the 2000s and 2010s than to those of the 1950s.Under this new climate paradigm,our results suggest that P.palustris might be more susceptible to growth reductions and less resistant to droughts than once expected.This work highlights the importance of understanding the impact of novel climate conditions on P.palustris and has implications for restoration efforts,such as using silvicultural treatments that reduce tree vulnerability to drought(e.g.,thinning)and promote other climate-adapted species in mixture with P.palustris.