The physicochemical properties of plasma-activated water(PAW)generated under different process conditions were investigated,and their changes under different storage conditions were also studied.The results showed tha...The physicochemical properties of plasma-activated water(PAW)generated under different process conditions were investigated,and their changes under different storage conditions were also studied.The results showed that increasing the processing time and power,and decreasing generated water volume,could cause an increase in the redox potential,conductivity,and temperature of PAW,and a decrease in its pH.A slower dissipation of the reactive oxygen and nitrogen species in PAW was found on storage at 4℃in a sealed conical flask than on storage at room temperature.The inactivation ability of plasma-activated lactic acid(LA)to Listeria monocytogenes(L.monocytogenes)and Pseudomonas aeruginosa(P.aeruginosa)was higher than that of PAW or LA alone under the same experimental conditions.The results of this study may provide theoretical information for the application of PAW as a potential antimicrobial agent in the future.展开更多
Narrow bandgap semiconductor MgIn_(2)S_(4) has been readily grown onto In_(2)O_(3) nanofibers by an in situ growing method.The so-formed MgIn_(2)S_(4)-In_(2)O_(3) hybrid nanofibers are characterized by strong visible ...Narrow bandgap semiconductor MgIn_(2)S_(4) has been readily grown onto In_(2)O_(3) nanofibers by an in situ growing method.The so-formed MgIn_(2)S_(4)-In_(2)O_(3) hybrid nanofibers are characterized by strong visible light absorption and intimate MgIn_(2)S_(4)/In_(2)O_(3) heterointerfaces.Under visible light illumination(λ≥400 nm),the hybrid nanofibers demonstrate an exceptionally high photocatalytic activity for Escherichia coli(E.coli)disinfection,outcompeting pristine MgIn_(2)S_(4),naked In_(2)O_(3) nanofibers,and many other photocatalytic systems reported.Specifically,the hybrid nanofibers achieve a 7 log reduction in viable cells for merely 20 min illumination while pristine MgIn_(2)S_(4) and naked In_(2)O_(3) nanofibers alone are almost inactive.Further analysis indicates that the hybrid nanofibers essentially form a type-II semiconductor heterojunctions which enable spatial separation of photocarriers.Owing to the intimate heterointerfaces,photocarriers can be promptly separated and accumulated respectively in In_(2)O_(3) and MgIn_(2)S_(4) thereby allowing continuous generation of copious reactive species for disinfection.This work signifies the usefulness of heterointerfaces in promoting photocarrier separation and provides a useful strategy to upgrade photocatalytic performance from otherwise almost inactive semiconductors.展开更多
基金National Natural Science Foundation of China(No.32260643)for financial support of this study。
文摘The physicochemical properties of plasma-activated water(PAW)generated under different process conditions were investigated,and their changes under different storage conditions were also studied.The results showed that increasing the processing time and power,and decreasing generated water volume,could cause an increase in the redox potential,conductivity,and temperature of PAW,and a decrease in its pH.A slower dissipation of the reactive oxygen and nitrogen species in PAW was found on storage at 4℃in a sealed conical flask than on storage at room temperature.The inactivation ability of plasma-activated lactic acid(LA)to Listeria monocytogenes(L.monocytogenes)and Pseudomonas aeruginosa(P.aeruginosa)was higher than that of PAW or LA alone under the same experimental conditions.The results of this study may provide theoretical information for the application of PAW as a potential antimicrobial agent in the future.
基金National Natural Science Foundation of China(Grant Nos.51972233,52172225)the Science and Technology Commission of Shanghai Municipality(Grant No.19DZ2271500)the Fundamental Research Funds for the Central Universities for funding.
文摘Narrow bandgap semiconductor MgIn_(2)S_(4) has been readily grown onto In_(2)O_(3) nanofibers by an in situ growing method.The so-formed MgIn_(2)S_(4)-In_(2)O_(3) hybrid nanofibers are characterized by strong visible light absorption and intimate MgIn_(2)S_(4)/In_(2)O_(3) heterointerfaces.Under visible light illumination(λ≥400 nm),the hybrid nanofibers demonstrate an exceptionally high photocatalytic activity for Escherichia coli(E.coli)disinfection,outcompeting pristine MgIn_(2)S_(4),naked In_(2)O_(3) nanofibers,and many other photocatalytic systems reported.Specifically,the hybrid nanofibers achieve a 7 log reduction in viable cells for merely 20 min illumination while pristine MgIn_(2)S_(4) and naked In_(2)O_(3) nanofibers alone are almost inactive.Further analysis indicates that the hybrid nanofibers essentially form a type-II semiconductor heterojunctions which enable spatial separation of photocarriers.Owing to the intimate heterointerfaces,photocarriers can be promptly separated and accumulated respectively in In_(2)O_(3) and MgIn_(2)S_(4) thereby allowing continuous generation of copious reactive species for disinfection.This work signifies the usefulness of heterointerfaces in promoting photocarrier separation and provides a useful strategy to upgrade photocatalytic performance from otherwise almost inactive semiconductors.