Jetting-based bioprinting facilitates contactless drop-on-demand deposition of subnanoliter droplets at well-defined positions to control the spatial arrangement of cells,growth factors,drugs,and biomaterials in a hig...Jetting-based bioprinting facilitates contactless drop-on-demand deposition of subnanoliter droplets at well-defined positions to control the spatial arrangement of cells,growth factors,drugs,and biomaterials in a highly automated layer-by-layer fabrication approach.Due to its immense versatility,jetting-based bioprinting has been used for various applications,including tissue engineering and regenerative medicine,wound healing,and drug development.A lack of in-depth understanding exists in the processes that occur during jetting-based bioprinting.This review paper will comprehensively discuss the physical considerations for bioinks and printing conditions used in jetting-based bioprinting.We first present an overview of different jetting-based bioprinting techniques such as inkjet bioprinting,laser-induced forward transfer bioprinting,electrohydrodynamic jet bioprinting,acoustic bioprinting and microvalve bioprinting.Next,we provide an in-depth discussion of various considerations for bioink formulation relating to cell deposition,print chamber design,droplet formation and droplet impact.Finally,we highlight recent accomplishments in jetting-based bioprinting.We present the advantages and challenges of each method,discuss considerations relating to cell viability and protein stability,and conclude by providing insights into future directions of jetting-based bioprinting.展开更多
针对坐标注意力(CA)在水平和垂直方向特征的平均池化可能丢失目标显著特征,以及使用二维普通卷积对小目标特征学习不足的情况,提出了CARFB(coordinate attention and receptive field block)模块。该模块将CA的平均池化修改为平均+最大...针对坐标注意力(CA)在水平和垂直方向特征的平均池化可能丢失目标显著特征,以及使用二维普通卷积对小目标特征学习不足的情况,提出了CARFB(coordinate attention and receptive field block)模块。该模块将CA的平均池化修改为平均+最大池化,以保留输入特征在水平和垂直方向的显著和细节信息;利用RFB具有不同大小感受野的优势,在水平和垂直方向分别使用RFB模块代替CA的融合特征统一卷积,以同时提取不同大小目标的特征;引入包含不同大小卷积核和步长的CBS模块,替换CA的二维普通卷积,进一步提取水平和垂直方向的特征,得到重新加权的输出特征。CARFB模块在水平和垂直方向保存目标位置信息,利用不同感受野提取不同大小目标的强辨别性特征,从而具有更强的特征学习能力。为了验证提出的即插即用模块CARFB的性能,将其嵌入ObjectBox目标检测框架,得到ObjectBox-CARFB模型;用CARFB模块替换RFBnet中的RFB模块,得到CARFBnet目标检测模型。MSCOCO数据集的实验测试表明,ObjectBox-CARFB模型的性能得到全面提升,尤其对小目标的检测性能提升突出;PASCALVOC和MSCOCO数据集的实验结果表明,CARFBnet300和CARFBnet512的目标检测能力分别优于原始RFBnet300和RFBnet512模型,并优于其他同系列对比模型。提出的CARFB模块具有更强的特征学习能力,对不同尺度目标均能取得较好的检测效果,特别是在小目标检测方面,效果提升显著。提出的CARFB模块可以嵌入到任何一个卷积神经网络,能保存更多的目标信息,具有更强的特征学习能力和更高的网络性能,对不同尺度目标均能取得较好的检测效果,尤其对小目标的检测效果提升显著。展开更多
基金support from NTU Presidential Postdoctoral Fellowship.
文摘Jetting-based bioprinting facilitates contactless drop-on-demand deposition of subnanoliter droplets at well-defined positions to control the spatial arrangement of cells,growth factors,drugs,and biomaterials in a highly automated layer-by-layer fabrication approach.Due to its immense versatility,jetting-based bioprinting has been used for various applications,including tissue engineering and regenerative medicine,wound healing,and drug development.A lack of in-depth understanding exists in the processes that occur during jetting-based bioprinting.This review paper will comprehensively discuss the physical considerations for bioinks and printing conditions used in jetting-based bioprinting.We first present an overview of different jetting-based bioprinting techniques such as inkjet bioprinting,laser-induced forward transfer bioprinting,electrohydrodynamic jet bioprinting,acoustic bioprinting and microvalve bioprinting.Next,we provide an in-depth discussion of various considerations for bioink formulation relating to cell deposition,print chamber design,droplet formation and droplet impact.Finally,we highlight recent accomplishments in jetting-based bioprinting.We present the advantages and challenges of each method,discuss considerations relating to cell viability and protein stability,and conclude by providing insights into future directions of jetting-based bioprinting.
文摘针对坐标注意力(CA)在水平和垂直方向特征的平均池化可能丢失目标显著特征,以及使用二维普通卷积对小目标特征学习不足的情况,提出了CARFB(coordinate attention and receptive field block)模块。该模块将CA的平均池化修改为平均+最大池化,以保留输入特征在水平和垂直方向的显著和细节信息;利用RFB具有不同大小感受野的优势,在水平和垂直方向分别使用RFB模块代替CA的融合特征统一卷积,以同时提取不同大小目标的特征;引入包含不同大小卷积核和步长的CBS模块,替换CA的二维普通卷积,进一步提取水平和垂直方向的特征,得到重新加权的输出特征。CARFB模块在水平和垂直方向保存目标位置信息,利用不同感受野提取不同大小目标的强辨别性特征,从而具有更强的特征学习能力。为了验证提出的即插即用模块CARFB的性能,将其嵌入ObjectBox目标检测框架,得到ObjectBox-CARFB模型;用CARFB模块替换RFBnet中的RFB模块,得到CARFBnet目标检测模型。MSCOCO数据集的实验测试表明,ObjectBox-CARFB模型的性能得到全面提升,尤其对小目标的检测性能提升突出;PASCALVOC和MSCOCO数据集的实验结果表明,CARFBnet300和CARFBnet512的目标检测能力分别优于原始RFBnet300和RFBnet512模型,并优于其他同系列对比模型。提出的CARFB模块具有更强的特征学习能力,对不同尺度目标均能取得较好的检测效果,特别是在小目标检测方面,效果提升显著。提出的CARFB模块可以嵌入到任何一个卷积神经网络,能保存更多的目标信息,具有更强的特征学习能力和更高的网络性能,对不同尺度目标均能取得较好的检测效果,尤其对小目标的检测效果提升显著。