期刊文献+
共找到40,208篇文章
< 1 2 250 >
每页显示 20 50 100
Reconstructions of time-evolving sound-speed fields perturbed by deformed and dispersive internal solitary waves in shallow water
1
作者 李沁然 孙超 +1 位作者 谢磊 黄晓冬 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期404-415,共12页
The high-fidelity reconstruction of sound speeds is crucial for predicting acoustic propagation in shallow water where internal solitary waves(ISWs)are prevalent.Mapping temperatures from time series to spatial fields... The high-fidelity reconstruction of sound speeds is crucial for predicting acoustic propagation in shallow water where internal solitary waves(ISWs)are prevalent.Mapping temperatures from time series to spatial fields is an approach widely used to reproduce the sound speed perturbed by deformed internal waves.However,wave-shape distortions are inherent in the modeling results.This paper analyzes the formation mechanism and dynamic behavior of the distorted waveform that is shown to arise from the mismatch between the modeled and real propagation speeds of individual solitons within an ISW packet.To mitigate distortions,a reconstruction method incorporating the dispersion property of an ISW train is proposed here.The principle is to assign each soliton a real speed observed in the experiment.Then,the modeled solitons propagate at their intrinsic speeds,and the packet disperses naturally with time.The method is applied to reconstruct the sound speed perturbed by ISWs in the South China Sea.The mean and median of the root-mean-square error between the reconstructed and measured sound speeds are below 2 m/s.The modeled shape deformations and packet dispersion agree well with observations,and the waveform distortion is reduced compared with the original method.This work ensures the high fidelity of waveguide-environment reconstructions and facilitates the investigation of sound propagation in the future. 展开更多
关键词 internal solitary wave deformation dispersION sound speed
下载PDF
Effects of Nano-CaCO_(3)Addition on Properties of Corundum-based Dispersive Purging Plugs
2
作者 SU Yuqing ZHU Yening +5 位作者 YU Baisong XI Zijian WEI Juncong TU Junbo ZHANG Houxing WANG Yilong 《China's Refractories》 CAS 2023年第4期28-32,共5页
In order to improve the properties of corundum based dispersive purging plugs,dispersive purging plug specimens were prepared using tabular corundum(1-0.15 and≤0.15 mm)as the aggregates,tabular corundum(≤0.044 mm)an... In order to improve the properties of corundum based dispersive purging plugs,dispersive purging plug specimens were prepared using tabular corundum(1-0.15 and≤0.15 mm)as the aggregates,tabular corundum(≤0.044 mm)andα-Al_(2)O_(3)micropowder(d_(50)=0.6μm)as the matrix,Secar 71 cement as the binder,introducing different amounts of nano-CaCO_(3),casting into shapes,and firing at different temperatures(1200 or 1600℃)for 4 h.The effects of the nano-CaCO_(3) extra-addition(0,0.5%,1.0%,1.5%and 2.0%,by mass)on the consistency of the castables as well as the properties and microstructure of the dispersive purging plug specimens were studied.The results show that:(1)with the fixed water addition,the consistency of the corundum castables decreases as the nano-CaCO_(3)addition increases;(2)with the increasing nano-CaCO_(3)addition,the bulk density of the specimens fired at different temperatures for 4 h decreases,the apparent porosity,the cold strength and the hot modulus of rupture all increase,the gas permeability does not change significantly;(3)the specimens fired at 1600℃ for 4 h have obviously better cold comprehensive performance than those fired at 1200℃for 4 h;(4)when the nano-CaCO_(3)addition is 1.5%,the comprehensive performance of the specimen is the optimal. 展开更多
关键词 dispersive purging plugs CONSISTENCY nano-calcium carbonate
下载PDF
Energy-dispersive X-ray Spectroscopy for the Quantitative Analysis of Pyrite Thin Specimens
3
作者 LUO Tingting GUO Yi +4 位作者 DENG Zhao LIU Xiaoqing SUN Zhenya QI Yanyuan YANG Meijun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1304-1310,共7页
To explore ways to improve the accuracy of quantitative analysis of samples in the micrometer to nanometer range of magnitudes,we adopted analytical transmission electron microscopy(AEM/EDS)for qualitative and quantit... To explore ways to improve the accuracy of quantitative analysis of samples in the micrometer to nanometer range of magnitudes,we adopted analytical transmission electron microscopy(AEM/EDS)for qualitative and quantitative analysis of pyrite materials.Additionally,the k factor of pyrite is calculated experimentally.To develop an appropriate non-standard quantitative analysis model for pyrite materials,the experimentally calculated k factor is compared with that estimated from the non-standard quantitative analytical model of the instrument software.The experimental findings demonstrate that the EDS attached to a TEM can be employed for precise quantitative analysis of micro-and nanoscale regions of pyrite materials.Furthermore,it serves as a reference for improving the results of the EDS quantitative analysis of other sulfides. 展开更多
关键词 analytical transmission electron microscopy(AEM) energy dispersive X-ray spectroscopy(EDS) PYRITE thin specimen quantitative analysis
下载PDF
Patterns and drivers of avian taxonomic and phylogenetic beta diversity in China vary across geographical backgrounds and dispersal abilities
4
作者 Jian-Chao Liang Zhi-Feng Ding +7 位作者 Chun-Lin Li Yi-Ming Hu Zhi-Xin Zhou Gan-Wen Lie Xiao-Nan Niu Wen-Bin Huang Hui-Jian Hu Xing-Feng Si 《Zoological Research》 SCIE CSCD 2024年第1期125-135,共11页
Geographical background and dispersal ability may strongly influence assemblage dissimilarity;however,these aspects have generally been overlooked in previous large-scale beta diversity studies.Here,we examined whethe... Geographical background and dispersal ability may strongly influence assemblage dissimilarity;however,these aspects have generally been overlooked in previous large-scale beta diversity studies.Here,we examined whether the patterns and drivers of taxonomic beta diversity(TBD)and phylogenetic beta diversity(PBD)of breeding birds in China vary across(1)regions on both sides of the Hu Line,which demarcates China’s topographical,climatic,economic,and social patterns,and(2)species with different dispersal ability.TBD and PBD were calculated and partitioned into turnover and nestedness components using a moving window approach.Variables representing climate,habitat heterogeneity,and habitat quality were employed to evaluate the effects of environmental filtering.Spatial distance was considered to assess the impact of dispersal limitation.Variance partitioning analysis was applied to assess the relative roles of these variables.In general,the values of TBD and PBD were high in mountainous areas and were largely determined by environmental filtering.However,different dominant environmental filters on either side of the Hu Line led to divergent beta diversity patterns.Specifically,climate-driven species turnover and habitat heterogeneity-related species nestedness dominated the regions east and west of the line,respectively.Additionally,bird species with stronger dispersal ability were more susceptible to environmental filtering,resulting in more homogeneous assemblages.Our results indicated that regions with distinctive geographical backgrounds may present different ecological factors that lead to divergent assemblage dissimilarity patterns,and dispersal ability determines the response of assemblages to these ecological factors.Identifying a single universal explanation for the observed pattern without considering these aspects may lead to simplistic or incomplete conclusions.Consequently,a comprehensive understanding of large-scale beta diversity patterns and effective planning of conservation strategies necessitate the consideration of both geographical background and species dispersal ability. 展开更多
关键词 Beta diversity Environmental filtering dispersal limitation Hu Line Species dispersal ability Breeding birds
下载PDF
Modeling Analysis of Factors Influencing Wind-Borne Seed Dispersal: A Case Study on Dandelion
5
作者 Kemeng Xue 《American Journal of Plant Sciences》 CAS 2024年第4期252-267,共16页
A weed is a plant that thrives in areas of human disturbance, such as gardens, fields, pastures, waysides, and waste places where it is not intentionally cultivated. Dispersal affects community dynamics and vegetation... A weed is a plant that thrives in areas of human disturbance, such as gardens, fields, pastures, waysides, and waste places where it is not intentionally cultivated. Dispersal affects community dynamics and vegetation response to global change. The process of seed disposal is influenced by wind, which plays a crucial role in determining the distance and probability of seed dispersal. Existing models of seed dispersal consider wind direction but fail to incorporate wind intensity. In this paper, a novel seed disposal model was proposed in this paper, incorporating wind intensity based on relevant references. According to various climatic conditions, including temperate, arid, and tropical regions, three specific regions were selected to establish a wind dispersal model that accurately reflects the density function distribution of dispersal distance. Additionally, dandelions growth is influenced by a multitude of factors, encompassing temperature, humidity, climate, and various environmental variables that necessitate meticulous consideration. Based on Factor Analysis model, which completely considers temperature, precipitation, solar radiation, wind, and land carrying capacity, a conclusion is presented, indicating that the growth of seeds is primarily influenced by plant attributes and climate conditions, with the former exerting a relatively stronger impact. Subsequently, the remaining two plants were chosen based on seed weight, yielding consistent conclusion. 展开更多
关键词 Seed dispersal Wind Intensity Climatic Effect Factor Analysis Model
下载PDF
A simple atomization approach enables monolayer dispersion of nano graphenes in cementitious composites with excellent strength gains
6
作者 Nanxi Dang Rijiao Yang +4 位作者 Chengji Xu Yu Peng Qiang Zeng Weijian Zhao Zhidong Zhang 《Nano Materials Science》 EI CAS CSCD 2024年第2期211-222,共12页
Carbon nano additives(CNAs)are critical to achieving the unique properties of functionalized composites,however,controlling the dispersion of CNAs in material matrix is always a challenging task.In this study,a simple... Carbon nano additives(CNAs)are critical to achieving the unique properties of functionalized composites,however,controlling the dispersion of CNAs in material matrix is always a challenging task.In this study,a simple atomization approach was successfully developed to promote the dispersion efficiency of graphene nanoplatelets(GNPs)in cement composites.This atomization approach can be integrated with the direct,indirect and combined ultrasonic stirrings in a homemade automatic stirring-atomization device.Mechanical and microstructure tests were performed on hardened cement pastes blended with GNPs in different stirring and mixing approaches.Results show that the direct ultrasonic stirrings enabled more homogeneous dispersions of GNP particles with a smaller size for a longer duration.The atomized droplets with the mean size of~100μm largely mitigated GNPs’agglomerations.Monolayer GNPs were observed in the cement matrix with the strength gain by up to 54%,and the total porosity decrease by 21%in 0.3 wt%GNPs dosage.The greatly enhanced dispersion efficiency of GNPs in cement also raised the cement hydration.This work provides an effective and manpower saving technique toward dispersing CNAs in engineering materials with great industrialization prospects. 展开更多
关键词 NANOMATERIALS dispersION ATOMIZATION STRENGTH Microstructure
下载PDF
CFD-PBM coupled modeling of the liquid-liquid dispersion characteristics and structure optimization for Kenics static mixer
7
作者 Junhai Deng Shilin Lan +4 位作者 Juchang Wu Shenghua Du Weidong Liu Luchang Han Yefeng Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期173-188,共16页
Kenics static mixers(KSM)are extensively used in industrial mixing-reaction processes by virtue of high mixing efficiency,low power homogenization and easy continuous production.Resolving liquid droplet size and its d... Kenics static mixers(KSM)are extensively used in industrial mixing-reaction processes by virtue of high mixing efficiency,low power homogenization and easy continuous production.Resolving liquid droplet size and its distribution and thus revealing the dispersion characteristics are of great significance for structural optimization and process intensification in the KSM.In this work,a computational fluid dynamics-population balance model(CFD-PBM)coupled method is employed to systematically investigate the effects of operating conditions and structural parameters of KSM on droplet size and its distribution,to further reveal the liquid-liquid dispersion characteristics.Results indicate that higher Reynolds numbers or higher dispersed phase volume fractions increase energy dissipation,reducing Sauter mean diameter(SMD)of dispersed phase droplets and with a shift in droplet size distribution(DSD)towards smaller size.Smaller aspect ratios,greater blade twist and assembly angles amplify shear rate,leading to smaller droplet size and a narrower DSD in the smaller range.The degree of impact exerted by the aspect ratio is notably greater.Notably,mixing elements with different spin enhance shear and stretching efficiency.Compared to the same spin,SMD becomes 3.7-5.8 times smaller in the smaller size range with a significantly narrower distribution.Taking into account the pressure drop and efficiency in a comprehensive manner,optimized structural parameters for the mixing element encompass an aspect ratio of 1-1.5,a blade twist angle of 180°,an assembly angle of 90°,and interlaced assembly of adjacent elements with different spin.This work provides vital theoretical underpinning and future reference for enhancing KSM performance. 展开更多
关键词 CFD Population BALANCE LIQUID-LIQUID dispersION Kenics STATIC MIXER
下载PDF
Tunable dispersion relations manipulated by strain in skyrmion-based magnonic crystals
8
作者 金兆年 何宣霖 +3 位作者 于超 方贺男 陈琳 陶志阔 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期692-696,共5页
We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. ... We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices. 展开更多
关键词 SKYRMION magnonic crystal spin wave dispersion relation
下载PDF
Effect of trigger system on experimental dispersion characteristics of active surface wave testing
9
作者 Lin Shibin Jeramy C.Ashlock +4 位作者 Zhu Liming Qin Zexiang Li Bo Zhu Xingji Zhai Changhai 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期311-318,共8页
A trigger system is typically employed in active seismic testing to trigger and synchronize multichannel surface wave data acquisition.The effect of the trigger system on the dispersion image of surface waves is empir... A trigger system is typically employed in active seismic testing to trigger and synchronize multichannel surface wave data acquisition.The effect of the trigger system on the dispersion image of surface waves is empirically known to be negligible,however,theoretical explanation regarding the effect of the trigger system is insufficient.This study systematically examines the theory for surface wave dispersion analysis and proves that the effect of the trigger system on a dispersion image is negligible via a solid theoretical explanation.Subsequently,based on the new theoretical explanation,an alternative method that uses only the relative phase difference between sensors to extract dispersion characteristics with better conceptual clarity is proposed.Two active surface wave testing cases are considered to validate the theory and method.The results indicate that(1)an accurate trigger system is not necessary for surface wave data acquisition,and(2)it is unnecessary to assume that the impact point is the generation point of the surface waves for the experimental dispersion analysis. 展开更多
关键词 site investigation surface waves data acquisition dispersION
下载PDF
BLOW-UP CONDITIONS FOR A SEMILINEAR PARABOLIC SYSTEM ON LOCALLY FINITE GRAPHS
10
作者 吴艺婷 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期609-631,共23页
In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of ... In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of degree m, the initial values, and the exponents in absorption terms, we prove that every non-negative solution of the semilinear parabolic system blows up in a finite time. Our current work extends the results achieved by Lin and Wu (Calc Var Partial Differ Equ, 2017, 56: Art 102) and Wu (Rev R Acad Cien Serie A Mat, 2021, 115: Art 133). 展开更多
关键词 semilinear parabolic system on graphs blow-up heat kernel estimate on graphs
下载PDF
A seismic elastic moduli module for the measurements of low-frequency wave dispersion and attenuation of fluid-saturated rocks under different pressures
11
作者 Yan-Xiao He Shang-Xu Wang +9 位作者 Gen-Yang Tang Chao Sun Hong-Bing Li San-Yi Yuan Xian Wei Li-Deng Gan Xiao-Feng Dai Qiang Ge Peng-Peng Wei Hui-Qing Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期162-181,共20页
Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and... Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion. 展开更多
关键词 Low-frequency measurements dispersion and attenuation Rock physics Fluid flow
下载PDF
Study on concentration distribution and detonation characteristics for non-axisymmetric fuel dispersal
12
作者 Linghui Zeng Zhongqi Wang +1 位作者 Xing Chen Jianping Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期484-495,共12页
The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation f... The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation fields of 85 kg cylindrical and fan-shaped fuel are investigated by experiments and numerical simulations.A dynamic model of the whole process for fuel dispersal and detonation is built.The concentration distribution of fuel is used as the initial condition to calculate the detonation stage,thus solving the initial value problem of detonation field.The phase and component changes of fuel cloud at different locations are compared.The fuel cloud is divided into directions of 0°,90°,135°and 180°.The results show that the maximum cloud radius is 20.94 m in 135°and the minimum is 12.04 m in 0°.The diameter of the detonation fireball is 53.6 m,and the peak temperature is 3455 K.The highest peak overpressure is 3.44 MPa in 0°and the lowest is 2.97 MPa in 135°.The proportion of liquid phase in 0°is22.90%,and the fuel loss is 11.8% and 9% higher than that in 135°and cylindrical charge,respectively.The stable propagation distance of blast wave in 135°is 42.50% longer than 0°and 28.37% longer than cylindrical charge. 展开更多
关键词 Fuel dispersal Concentration distribution Detonation characteristic Fuel loss Numerical simulation
下载PDF
Atomically Dispersed Ruthenium Catalysts with Open Hollow Structure for Lithium-Oxygen Batteries
13
作者 Xin Chen Yu Zhang +5 位作者 Chang Chen Huinan Li Yuran Lin Ke Yu Caiyun Nan Chen Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期154-164,共11页
Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult... Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present.Here,we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure(h-RuNC)for Lithium–oxygen battery.On one hand,the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products,thereby greatly enhancing the redox kinetics.On the other hand,the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules.Therefore,the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability,ultimately achieving a high-performance lithium–oxygen battery. 展开更多
关键词 Atomically dispersed Open hollow structure Discharge product LITHIUM Oxygen battery
下载PDF
The Turbulent Schmidt Number for Transient Contaminant Dispersion in a Large Ventilated Room Using a Realizable k-εModel
14
作者 Fei Wang Qinpeng Meng +3 位作者 Jinchi Zhao Xin Wang Yuhong Liu Qianru Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第4期829-846,共18页
Buildings with large open spaces in which chemicals are handled are often exposed to the risk of explosions.Computational fluid dynamics is a useful and convenient way to investigate contaminant dispersion in such lar... Buildings with large open spaces in which chemicals are handled are often exposed to the risk of explosions.Computational fluid dynamics is a useful and convenient way to investigate contaminant dispersion in such large spaces.The turbulent Schmidt number(Sc_(t))concept has typically been used in this regard,and most studies have adopted a default value.We studied the concentration distribution for sulfur hexafluoride(SF_(6))assuming different emission rates and considering the effect of Sc_(t).Then we examined the same problem for a light gas by assuming hydrogen gas(H_(2))as the contaminant.When SF_(6) was considered as the contaminant gas,a variation in the emission rate completely changed the concentration distribution.When the emission rate was low,the gravitational effect did not take place.For both low and high emission rates,an increase in S_(ct) accelerated the transport rate of SF_(6).In contrast,for H_(2) as the contaminant gas,a larger S_(ct) could induce a decrease in the H_(2) transport rate. 展开更多
关键词 Large space CFD turbulent Schmidt number contaminant dispersion emission rate
下载PDF
P-and SV-wave dispersion and attenuation in saturated microcracked porous rock with aligned penny-shaped fractures
15
作者 Sheng-Qing Li Wen-Hao Wang +2 位作者 Yuan-Da Su Jun-Xin Guo Xiao-Ming Tang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期143-161,共19页
P-and SV-wave dispersion and attenuation have been extensively investigated in saturated poroelastic media with aligned fractures.However,there are few existing models that incorporate the multiple wave attenuation me... P-and SV-wave dispersion and attenuation have been extensively investigated in saturated poroelastic media with aligned fractures.However,there are few existing models that incorporate the multiple wave attenuation mechanisms from the microscopic scale to the macroscopic scale.Hence,in this work,we developed a unified model to incorporate the wave attenuation mechanisms at different scales,which includes the microscopic squirt flow between the microcracks and pores,the mesoscopic wave-induced fluid flow between fractures and background(FB-WIFF),and the macroscopic Biot's global flow and elastic scattering(ES)from the fractures.Using Tang's modified Biot's theory and the mixed-boundary conditions,we derived the exact frequency-dependent solutions of the scattering problem for a single penny-shaped fracture with oblique incident P-and SV-waves.We then developed theoretical models for a set of aligned fractures and randomly oriented fractures using the Foldy approximation.The results indicated that microcrack squirt flow considerably influences the dispersion and attenuation of P-and SV-wave velocities.The coupling effects of microcrack squirt flow with the FB-WIFF and ES of fractures cause much higher velocity dispersion and attenuation for P waves than for SV waves.Randomly oriented fractures substantially reduce the attenuation caused by the FB-WIFF and ES,particularly for the ES attenuation of SV waves.Through a comparison with existing models in the limiting cases and previous experimental measurements,we validated our model. 展开更多
关键词 Aligned fractures P-and SV-wave dispersion and attenuation Microcracked porous background FB-WIFF Elastic scattering Squirt flow
下载PDF
Effects of wind speed,underlying surface,and seed morphological traits on the secondary seed dispersal in the Tengger Desert,China
16
作者 QU Wenjie ZHAO Wenzhi +3 位作者 YANG Xinguo WANG Lei ZHANG Xue QU Jianjun 《Journal of Arid Land》 SCIE CSCD 2024年第4期531-549,共19页
The maintenance of sand-fixing vegetation is important for the stability of artificial sand-fixing systems in which seed dispersal plays a key role.Based on field wind tunnel experiments using 11 common plant species ... The maintenance of sand-fixing vegetation is important for the stability of artificial sand-fixing systems in which seed dispersal plays a key role.Based on field wind tunnel experiments using 11 common plant species on the southeastern edge of the Tengger Desert,China,we studied the secondary seed dispersal in the fixed and semi-fixed sand dunes as well as in the mobile dunes in order to understand the limitations of vegetation regeneration and the maintenance of its stability.Our results indicated that there were significant variations among the selected 11 plant species in the threshold of wind speed(TWS).The TWS of Caragana korshinskii was the highest among the 11 plant species,whereas that of Echinops gmelinii was the lowest.Seed morphological traits and underlying surface could generally explain the TWS.During the secondary seed dispersal processes,the proportions of seeds that did not disperse(no dispersal)and only dispersed over short distance(short-distance dispersal within the wind tunnel test section)were significantly higher than those of seeds that were buried(including lost seeds)and dispersed over long distance(long-distance dispersal beyond the wind tunnel test section).Compared with other habitats,the mobile dunes were the most difficult places for secondary seed dispersal.Buried seeds were the easiest to be found in the semi-fixed sand dunes,whereas fixed sand dunes were the best sites for seeds that dispersed over long distance.The results of linear mixed models showed that after controlling the dispersal distance,smaller and rounder seeds dispersed farther.Shape index and wind speed were the two significant influencing factors on the burial of seeds.The explanatory power of wind speed,underlying surface,and seed morphological traits on the seeds that did not disperse and dispersed over short distance was far greater than that on the seeds that were buried and dispersed over long distance,implying that the processes and mechanisms of burial and long-distance dispersal are more complex.In summary,most seeds in the study area either did not move,were buried,or dispersed over short distance,promoting local vegetation regeneration. 展开更多
关键词 seed dispersal seed morphological traits wind speed vegetation regeneration wind tunnel Tengger Desert
下载PDF
Strong synergy between physical and chemical properties:Insight into optimization of atomically dispersed oxygen reduction catalysts
17
作者 Yifan Zhang Linsheng Liu +4 位作者 Yuxuan Li Xueqin Mu Shichun Mu Suli Liu Zhihui Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期36-49,共14页
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz... Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered. 展开更多
关键词 Atomically dispersed catalysts Coordination environment Electronic orbitals Inter-site distance effect Oxygen reduction reaction
下载PDF
Particle residence time distribution and axial dispersion coefficient in a pressurized circulating fluidized bed by using multiphase particle-in-cell simulation
18
作者 Jinnan Guo Daoyin Liu +2 位作者 Jiliang Ma Cai Liang Xiaoping Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期167-176,共10页
The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-... The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-0.6 MPa),fluidizing gas velocity(2-7 m·s^(-1)),and solid circulation rate(10-90 kg·m^(-2)·s^(-1))on particle RTD and axial dispersion coefficient in a PCFB are numerically investigated based on the multiphase particle-in-cell(MP-PIC)method.The details of the gas-solid flow behaviors of PCFB are revealed.Based on the gas-solid flow pattern,the particles tend to move more orderly under elevated pressures.With an increase in either fluidizing gas velocity or solid circulation rate,the mean residence time of particles decreases while the axial dispersion coefficient increases.With an increase in pressure,the core-annulus flow is strengthened,which leads to a wider shape of the particle RTD curve and a larger mean particle residence time.The back-mixing of particles increases with increasing pressure,resulting in an increase in the axial dispersion coefficient. 展开更多
关键词 Pressurized circulating fluidized bed MP-PIC method Residence time distribution Axial dispersion coefficient
下载PDF
Distributed Resource Allocation in Dispersed Computing Environment Based on UAV Track Inspection in Urban Rail Transit
19
作者 Tong Gan Shuo Dong +1 位作者 Shiyou Wang Jiaxin Li 《Computers, Materials & Continua》 SCIE EI 2024年第7期643-660,共18页
With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based on... With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based onUAV is urgently needed to avoid major safety accidents.At the same time,the geographical distribution of IoT devices results in the inefficient use of the significant computing potential held by a large number of devices.As a result,the Dispersed Computing(DCOMP)architecture enables collaborative computing between devices in the Internet of Everything(IoE),promotes low-latency and efficient cross-wide applications,and meets users’growing needs for computing performance and service quality.This paper focuses on examining the resource allocation challenge within a dispersed computing environment that utilizes UAV inspection tracks.Furthermore,the system takes into account both resource constraints and computational constraints and transforms the optimization problem into an energy minimization problem with computational constraints.The Markov Decision Process(MDP)model is employed to capture the connection between the dispersed computing resource allocation strategy and the system environment.Subsequently,a method based on Double Deep Q-Network(DDQN)is introduced to derive the optimal policy.Simultaneously,an experience replay mechanism is implemented to tackle the issue of increasing dimensionality.The experimental simulations validate the efficacy of the method across various scenarios. 展开更多
关键词 UAV track inspection dispersed computing resource allocation deep reinforcement learning Markov decision process
下载PDF
Spatio-Temporal Change of Dispersal Areas of Greater Kudu (Tragelaphus strepsiceros) in Lake Bogoria Landscape, Kenya
20
作者 Beatrice Chepkoech Cheserek George Morara Ogendi Paul Mutua Makenzi 《Open Journal of Ecology》 2024年第3期183-198,共16页
Decline in wildlife populations is manifest globally, regionally and locally. A wildlife decline of 68% has been reported in Kenya’s rangelands with Baringo County experiencing more than 85% wildlife loss in the last... Decline in wildlife populations is manifest globally, regionally and locally. A wildlife decline of 68% has been reported in Kenya’s rangelands with Baringo County experiencing more than 85% wildlife loss in the last four decades. Greater Kudu (Tragelaphus strepsiceros) is endemic to Lake Bogoria landscape in Baringo County and constitutes a major tourist attraction for the region necessitating use of its photo on the County’s logo and thus a flagship species. Tourism plays a central role in Baringo County’s economy and is a major source of potential growth and employment creation. The study was carried out to assess spatio-temporal change of dispersal areas of Greater Kudu (GK) in Lake Bogoria landscape in the last four years for enhanced adaptive management and improved livelihoods. GK population distribution primary data collected in December 2022 and secondary data acquired from Lake Bogoria National Game Reserve (LBNGR) for 2019 and 2020 were digitized using in a Geographic Information System (GIS). Measures of dispersion and point pattern analysis (PPA) were used to analyze dispersal of GK population using GIS. Spatio-temporal change of GK dispersal in LBNR was evident thus the null hypothesis was rejected. It is recommended that anthropogenic activities contributing to GK’s habitat degradation be curbed by providing alternative livelihood sources and promoting community adoption of sustainable technologies for improved livelihoods. 展开更多
关键词 Spatio-Temporal Change dispersal Greater Kudu (Tragelaphus Strepsiceros) Point Pattern Analysis (PPA) GIS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部