Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent...Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent surface appearance forms, but the interface macrograph for each lap joint cross-section is different. With the increase of welding speed or the decrease of tool rotation rate, the amount of Ti alloy particles stirred into the stir zone by the force of tool pin decreases continuously. Moreover, the failure loads of the lap joints also decrease with increasing welding speed and the largest value is achieved at welding speed of 60 mm/min and tool rotation rate of 1500 r/min, where the interracial zone can be divided into 3 kinds of layers. The microhardness of the lap joint shows an uneven distribution and the maximum hardness of HV 502 is found in the middle of the stir zone.展开更多
Components of Ti and Al dissimilar alloys were obtained by wire and arc additive manufacturing using two cold metal transfer(CMT)modes.Direct current CMT(DC-CMT)mode was used for Ti alloy deposition,and DC-CMT or CMT ...Components of Ti and Al dissimilar alloys were obtained by wire and arc additive manufacturing using two cold metal transfer(CMT)modes.Direct current CMT(DC-CMT)mode was used for Ti alloy deposition,and DC-CMT or CMT plus pulse(CMT+P)mode was used for the Al alloy deposition.During deposition of the first Al alloy layer,little and a significant amount of Ti alloy were melted using DC-CMT and CMT+P mode,respectively.TiAl_(3)formed in the reaction layer when DC-CMT mode was used,while TiAl_(3),TiAl,and Ti3Al formed in the reaction layer when CMT+P mode was used.Compared to using DC-CMT mode,more cracks occurred when using CMT+P.The nanohardness of the reaction layer was between that of the Al and Ti alloys,irrespective of the CMT modes.The average tensile strengths of the samples using DC-CMT and CMT+P mode were 108 MPa and 24 MPa,respectively.DC-CMT mode was more suitable for the wire and arc additive manufacturing of Ti/Al dissimilar alloys.展开更多
Aluminium alloys generally present low weldability by traditional fusion welding process. Development of the friction stir welding (FSW) has provided an alternative improved way of producing aluminium joints in a fa...Aluminium alloys generally present low weldability by traditional fusion welding process. Development of the friction stir welding (FSW) has provided an alternative improved way of producing aluminium joints in a faster and reliable manner. The quality of a weld joint is stalwartly influenced by process parameter used during welding. An approach to develop a mathematical model was studied for predicting and optimizing the process parameters of dissimilar aluminum alloy (AA6351 T6-AA5083 Hlll)joints by incorporating the FSW process parameters such as tool pin profile, tool rotational speed welding speed and axial force. The effects of the FSW process parameters on the ultimate tensile strength (UTS) of friction welded dissimilar joints were discussed. Optimization was carried out to maximize the UTS using response surface methodology (RSM) and the identified optimum FSW welding parameters were reported.展开更多
This work aims to establish a suitable numerical simulation model for hybrid laser-electric arc heat source welding of dissimilar Mg alloys between AZ31 and AZ80. Based on the energy conservation law and Fourier’s la...This work aims to establish a suitable numerical simulation model for hybrid laser-electric arc heat source welding of dissimilar Mg alloys between AZ31 and AZ80. Based on the energy conservation law and Fourier’s law of heat conduction, the differential equations of the three-dimensional temperature field for nonlinear transient heat conduction are built. According to the analysis of nonlinear transient heat transfer, the equations representing initial conditions and boundary conditions are obtained. The “double ellipsoidal heat source + 3D Gaussian heat source”combination was chosen to construct the laser-electric arc hybrid heat source. The weld bead morphologies and the distribution of temperature, stress, displacement and plastic strains are numerically simulated. The actual welding experiments were performed by a hybrid laser-electric arc welding machine. The interaction mechanism between laser and electric arc in the hybrid welding of Mg alloys is discussed in detail. The hybrid heat source can promote the absorption of laser energy and electric arc in the molten pool, resulting in more uniform energy distribution in the molten pool and the corresponding improvement of welding parameters. This work can provide theoretical guidance and data supports for the optimization of the hybrid laser-electric arc welding processes for Mg alloys.展开更多
The effects of the base material(BM)location on the mechanical properties and the exfoliation corrosion performance of friction-stir-welded(FSWed)dissimilar 2024-to-5083 aluminum alloy joints were investigated.Scannin...The effects of the base material(BM)location on the mechanical properties and the exfoliation corrosion performance of friction-stir-welded(FSWed)dissimilar 2024-to-5083 aluminum alloy joints were investigated.Scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),tensile tests and electrochemical experiments were conducted.The results revealed that the BM location had little effect on the tensile properties of the joints.The grain orientation spread(GOS)value of 2024 alloy side was lower than that of 5083 alloy side.Intergranular corrosion occurred mainly on the 2024 alloy side,while the grain interior of the 5083 alloy side was corroded due to the higher GOS value and dislocation density.The FSWed dissimilar joints with a superior exfoliation corrosion resistance could be achieved when the 5083 aluminum alloy with better corrosion performance was positioned on the retreating side.展开更多
Friction stir keyholeless spot welding(FSKSW) using a retractable pin for 1.0 mm thick galvanized mild steel and 3 mm thick AZ31 B magnesium alloy in a lap configuration was investigated.The process variables were o...Friction stir keyholeless spot welding(FSKSW) using a retractable pin for 1.0 mm thick galvanized mild steel and 3 mm thick AZ31 B magnesium alloy in a lap configuration was investigated.The process variables were optimized in terms of the joint strength.The effects of the stacking sequence on joint formation and the joining mechanism of FSKSW AZ31B-to-mild steel joints were also analyzed.It shows that the process window and joint strength are strongly influenced by the stacking sequence of the workpieces.While the process window is narrow and unstable for FSKSW of a magnesium-to-steel stack-up,a desirable process was established for the steel-to-magnesium stacking sequence,a desirable process and higher strength joint can be got when the steel-to-magnesium stacking sequence.XRD phase and EPMA analyses of the FSKSW joint showed that the intermetallic compounds are formed at the steel-to-magnesium interface,and the element diffusion between the mild steel and AZ31 B magnesium alloy revealed that the joining methods for FSKSW joints is the main mechanical joining along with certain metallurgical bonding.展开更多
The effects of welding heat input and post-weld heat treatment on the mechanical and microstructural aspects of dissimilarfriction stir welds of age-hardened AA7075-T6and strain hardenable AA5086-H32aluminium alloys w...The effects of welding heat input and post-weld heat treatment on the mechanical and microstructural aspects of dissimilarfriction stir welds of age-hardened AA7075-T6and strain hardenable AA5086-H32aluminium alloys were investigated.X-raydiffraction(XRD)residual stress analysis and tensile testing together with optical metallography and transmission electronmicroscopy(TEM)were performed to assess the effects of process parameters on welded joints.It was discovered that jointsproduced without heat sink exhibited more homogeneous stir zones than other joints.Of the natural aging time studied,higheramount of solid solution during rapid cooling of welds produced higher driving force for increase in hardness in the AA7075sideduring natural aging.Natural aging within stirring zone and thermo-mechanical affected zone of AA7075side resulted in a10to25MPa reduction in the residual stress in these zones;its effect decreased considerably in the welds performed without heat sink.Inaddition,natural aging had no noticeable effect on the joint strength.展开更多
Solid-state bonding between pure titanium and Ti6Al4V(TC4)alloy was conducted by a new bonding method named as rigid restraint thermal self-compressing bonding.Effects of heating time on bonding interface,atom diffusi...Solid-state bonding between pure titanium and Ti6Al4V(TC4)alloy was conducted by a new bonding method named as rigid restraint thermal self-compressing bonding.Effects of heating time on bonding interface,atom diffusion and mechanical properties of the joints were studied.Results show that atom diffusion between pure titanium and TC4 alloy significantly takes place during bonding.The diffusion depths of Al and V in pure titanium side are increased with increasing heating time.Due to the enhancement of atom diffusion,bond quality of the bonding interface is improved along with the increase of heating time.The heating time seems to have little effect on microhardness distribution across the joint.However,the tensile strength and ductility of the joint have close relation to heating time.Prolonging heating time can improve the tensile strength and ductility of the joint,especially the latter.When the heating time increases to 450 s,solid-state joint with good combination of strength and ductility is attained.展开更多
Based on the investigated microstructure of different zones in the annealed automatic gas tungsten arc weld joint of TA16 and TC4 titanium alloys,the mechanical property of them was assessed under fatigue crack growth...Based on the investigated microstructure of different zones in the annealed automatic gas tungsten arc weld joint of TA16 and TC4 titanium alloys,the mechanical property of them was assessed under fatigue crack growth rate tests.For evaluation of fatigue crack growth rate,three points bending specimens were used.The correlation between the range of stress intensity factor and crack growth rate was determined in different zones of the annealed weld joint.Fatigue crack growth rates were obviously different in different zones of weld joint of dissimilar titanium alloys,due to their different microstructures.Scanning electron microscope examinations were conducted on the fracture surface in order to determine the relevant fracture mechanisms and crack growth mechanisms with respect to the details of microstructure.展开更多
In this research project,copper and stainless steel were connected by two laser welding methods:straight seam welding and swing welding.Then,electronic tensile test machine,X-ray diffractometer,scanning electron micro...In this research project,copper and stainless steel were connected by two laser welding methods:straight seam welding and swing welding.Then,electronic tensile test machine,X-ray diffractometer,scanning electron microscope and metallographic microscope were used to analyze the tensile properties,macroscopic and microscopic structure morphology and phase of the welded joint.Based on the experimental results,we determined that the strength of the straight seam welded joint was higher.Because of the intermetallic compound near the weld in the swing welding process,it leads to stress concentration,crack cracking and strength reduction.In addition,the oscillating laser beam also leads to the disorderly direction of columnar crystal and coarse structure,which makes the joint strength decrease.展开更多
This study focuses on the bonding interface characteristics and mechanical properties of the bobbin tool friction stir welded dissimilar AA6056 and AA2219 aluminum alloy joints using diff erent welding speeds.Voids ar...This study focuses on the bonding interface characteristics and mechanical properties of the bobbin tool friction stir welded dissimilar AA6056 and AA2219 aluminum alloy joints using diff erent welding speeds.Voids arise solely in the stir zone at the AA2219 side.A distinct boundary with limited material mixing develops at the middle section of the bonding interface,while excellent material mixing with an irregularly jagged pattern forms at the top and bottom sections of the bonding interface.Increasing the welding speed,the material mixing is rarely changed at the middle section in comparison with the bottom section.Furthermore,a small diff erence between Guinier–Preston dissolution and Q phase precipitation leads to rare change of hardness in the heat aff ected zone(HAZ)at the AA6056 side.The increased hardness of the HAZ at the AA2219 side is attributed to avoidance of the dissolution ofθ’’phase precipitates.A maximum tensile strength of 181 MPa is obtained at 300 mm min-1.Fractures occur at the AA6056 side near the top and bottom surfaces and at the bonding interface in the middle section of the joints.The regions close to the top and bottom surfaces of the joints show a better ductility.展开更多
Cyclic deformation behavior of friction-stir-welded dissimilar AA2024-T351 to AA7075-T65 aluminum alloy joints was evaluated via stepwise tests at different strain rates,along with transmission electron microscopy exa...Cyclic deformation behavior of friction-stir-welded dissimilar AA2024-T351 to AA7075-T65 aluminum alloy joints was evaluated via stepwise tests at different strain rates,along with transmission electron microscopy examinations to characterize the precipitates required to assess internal stresses.Electron backscatter diffraction was employed to observe the inhomogeneous microstructures of the FSWed joints.Strain localization appeared in the heat affected zone(HAZ)of AA2024 side.After cyclic deformation of 500 cycles at a total strain amplitude of 0.5%,the strength of the dissimilar joints resumed basically to that of AA2024 base material.And the AA2024 HAZ was obviously hardened,which should be attributed to the introduced dislocations during cyclic deformation process.Cyclic hardening capacity of the joints increased with decreasing strain rate.展开更多
The microstructure and mechanical properties of pulse metal inert-gas (MIG) welded dissimilar joints between 4 mm thick wrought 6061-T6 and cast A356-T6 aluminum alloy plates were investigated. The tensile strength ...The microstructure and mechanical properties of pulse metal inert-gas (MIG) welded dissimilar joints between 4 mm thick wrought 6061-T6 and cast A356-T6 aluminum alloy plates were investigated. The tensile strength of the joints reached 235 MPa, which is 83% of that of 6061 aluminum alloy, and then decreased with the increase of travel speed while keeping other welding parameters constant. The microstructure, composition and fractography of joints were examined by the optical microscopy (OM), scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). Grain boundary liquation and segregation occurred in the partially melted zone (PMZ) on 6061 aluminum alloy side, and brittle Fe-rich phases were observed in partially melted zone on A356 aluminum alloy side. The minimum microhardness appeared in heat-affected zone (HAZ) near A356 aluminum alloy substrate. The samples during tensile test failed mainly in PMZ and HAZ on A356 aluminum alloy side through mixed fracture mode with quasi cleavage and dimples on fracture surface.展开更多
Friction stir welding(FSW) was used to weld dissimilar Al-Mg-Si/Al-Zn-Mg aluminum alloys in this work.Influences of sheet configuration on microstructure and mechanical properties of the joints were mainly discussed...Friction stir welding(FSW) was used to weld dissimilar Al-Mg-Si/Al-Zn-Mg aluminum alloys in this work.Influences of sheet configuration on microstructure and mechanical properties of the joints were mainly discussed.Results showed that rather different joint cross sections were obtained when using different sheet configurations.Coarser β' phases can be observed at the heat affected zone(HAZ) of the Al-Mg-Si alloy side,which was the main factor affecting the tensile properties and the fatigue properties.Tensile strengths of the dissimilar Al-Mg-Si/Al-Zn-Mg joints using both configurations were higher than that of the Al-Mg-Si FSW joint.When the Al-Zn-Mg alloy was located at the advancing side(AS),the joints owned better fatigue properties due to the bridging effect of the big secondary phase particles.展开更多
To improve tensile-shear properties of fiction stir lap welded(FSLW) dissimilar Al/Mg joints, pin-tip profiles were innovatively designed and welding speed was optimized, and effects of them on formation, interface mi...To improve tensile-shear properties of fiction stir lap welded(FSLW) dissimilar Al/Mg joints, pin-tip profiles were innovatively designed and welding speed was optimized, and effects of them on formation, interface microstructure and mechanical properties of different FSLW joints were investigated. With increasing the welding speed, the tensile-shear load of FSLW joints produced by three pins presents an increasing firstly and then decreasing trend. Compared with Rpin, the hook and hole defect in the joints made by S-pin and T-pin are eliminated owing to additional eccentric force. Moreover, the joints obtained by T-pin at 75 mm/min have the highest tensile-shear load, and a maximum value of 3.425 kN is produced, which increases by 96.8%.Meanwhile, the pin-tip profile improves significantly the interface reaction depending on the welding temperature. For R-pin, thick brittle intermetallic compounds of about 6.9 μm Al3Mg2and 13.3 μm Al12Mg17layers at the welding interface derived from diffusion reaction are formed, resulting in continuous cracks. However, using T-pin can raise the interface temperature, and which makes the interface liquefy locally to generate only 2.2 μm Al3Mg2layer and dispersive(Al12-Mg17+Mg) eutectic structure. This can release high residual stress and remove welding crack, consequently enhancing the interface properties of T-pin joints.展开更多
The Co-based alloy/AISI 410 stainless steel dissimilar welded joint was fabricated by the electron beam welding(EBW)technique.The anomalous microstructure containing the element transition zone(ETZ)and/or core of tail...The Co-based alloy/AISI 410 stainless steel dissimilar welded joint was fabricated by the electron beam welding(EBW)technique.The anomalous microstructure containing the element transition zone(ETZ)and/or core of tail-like zone(CTLZ)is in the weld metal(WM)adjacent to the fusion line.The melting temperature difference between the WM and AISI 410 steel,melt stirring effect and element diffusion can trigger the formation of such anomalous microstructure.In particular,the larger distance of the region in WM away from the fusion line,the smaller CTLZ and larger ETZ occurred.Compared with the fine and ellipsoidal precipitates in the as-welded CTLZ,a large number of chain-type clustered precipitates were detected in the CTLZ and ETZ interface after the aging treatment at 566°C for 1000 h.The element diffusion under elevated temperature in WM is regarded as the crucial factor for such anomalous microstructure evolution during the aging treatment.展开更多
Ultrasonic-stationary shoulder assisted friction stir welding(U-SSFSW)is a novel hybrid welding technique,which reveals promising prospect in joining Al/Mg dissimilar alloys.A thorough understanding of U-SSFSW process...Ultrasonic-stationary shoulder assisted friction stir welding(U-SSFSW)is a novel hybrid welding technique,which reveals promising prospect in joining Al/Mg dissimilar alloys.A thorough understanding of U-SSFSW process is imperative for the further application of this technique.Pigeon-inspired optimization(PIO)is a swarm intelligent optimization algorithm and is proposed in mathematical modeling and process optimization by artificial intelligence.In this study,PIO optimized artificial neural network(PIOANN)was firstly established to acquire the relationships between the inputs and output of the Al/Mg welding process by U-SSFSW technique.A reliable PIO-ANN was achieved and the joint with a tensile strength of 161 MPa was acquired under the PIO optimized parameters.This tensile strength is higher than any ever-reported results with the similar welding condition.The joint formation,microstructure,microhardness and fracture behaviors were systemically investigated based on the reported studies and the confirmation experiment of this study to explore the enhancing mechanism of U-SSFSW Al/Mg joint.展开更多
Plasma-MIG hybrid arc welding is a hybrid heating source welding method which is composed of plasma arc and MIG arc. During Plasma-MIG hybrid arc welding process, the interface behavior of copper and steel dissimilar ...Plasma-MIG hybrid arc welding is a hybrid heating source welding method which is composed of plasma arc and MIG arc. During Plasma-MIG hybrid arc welding process, the interface behavior of copper and steel dissimilar alloy is investigated. The results show that electromagnetic stirring effect decreases and the heat input increases with the increase of outer plasma current in the hybrid arc welding process. The interface diffusion and interface thickness is controlled by the tradeoff of electromagnetic stirring effect degradation and heat input increase. The interface diffusion and interface thickness are controlled by decreasing the electromagnetic stirring force and increasing the heat input with the increase of plasma current in Cu/Fe plasma-MIG hybrid arc welding process.展开更多
基金Project (2011BAB206006) supported by the Natural Science Foundation of Jiangxi Province,ChinaProject (2009ZE56011) supported by the Aviation Science Funds of ChinaProject (GJJ12411) supported by the Education Department of Jiangxi Province,China
文摘Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent surface appearance forms, but the interface macrograph for each lap joint cross-section is different. With the increase of welding speed or the decrease of tool rotation rate, the amount of Ti alloy particles stirred into the stir zone by the force of tool pin decreases continuously. Moreover, the failure loads of the lap joints also decrease with increasing welding speed and the largest value is achieved at welding speed of 60 mm/min and tool rotation rate of 1500 r/min, where the interracial zone can be divided into 3 kinds of layers. The microhardness of the lap joint shows an uneven distribution and the maximum hardness of HV 502 is found in the middle of the stir zone.
基金National Natural Science Foundation of China(grant number 52075377 and 51575381)Tianjin Research Program of Application Foundation and Advanced Technology(grant number 15JCZDJC38600)supported by the China Scholarship Council(No.201706255090 and No.201806250043)。
文摘Components of Ti and Al dissimilar alloys were obtained by wire and arc additive manufacturing using two cold metal transfer(CMT)modes.Direct current CMT(DC-CMT)mode was used for Ti alloy deposition,and DC-CMT or CMT plus pulse(CMT+P)mode was used for the Al alloy deposition.During deposition of the first Al alloy layer,little and a significant amount of Ti alloy were melted using DC-CMT and CMT+P mode,respectively.TiAl_(3)formed in the reaction layer when DC-CMT mode was used,while TiAl_(3),TiAl,and Ti3Al formed in the reaction layer when CMT+P mode was used.Compared to using DC-CMT mode,more cracks occurred when using CMT+P.The nanohardness of the reaction layer was between that of the Al and Ti alloys,irrespective of the CMT modes.The average tensile strengths of the samples using DC-CMT and CMT+P mode were 108 MPa and 24 MPa,respectively.DC-CMT mode was more suitable for the wire and arc additive manufacturing of Ti/Al dissimilar alloys.
文摘Aluminium alloys generally present low weldability by traditional fusion welding process. Development of the friction stir welding (FSW) has provided an alternative improved way of producing aluminium joints in a faster and reliable manner. The quality of a weld joint is stalwartly influenced by process parameter used during welding. An approach to develop a mathematical model was studied for predicting and optimizing the process parameters of dissimilar aluminum alloy (AA6351 T6-AA5083 Hlll)joints by incorporating the FSW process parameters such as tool pin profile, tool rotational speed welding speed and axial force. The effects of the FSW process parameters on the ultimate tensile strength (UTS) of friction welded dissimilar joints were discussed. Optimization was carried out to maximize the UTS using response surface methodology (RSM) and the identified optimum FSW welding parameters were reported.
基金Project(52004154) supported by the National Natural Science Foundation of ChinaProject(ZR2020QE002) supported by the Shandong Provincial Natural Science Foundation,ChinaProject(6142005190208) supported by the National Key Laboratory Foundation of China。
文摘This work aims to establish a suitable numerical simulation model for hybrid laser-electric arc heat source welding of dissimilar Mg alloys between AZ31 and AZ80. Based on the energy conservation law and Fourier’s law of heat conduction, the differential equations of the three-dimensional temperature field for nonlinear transient heat conduction are built. According to the analysis of nonlinear transient heat transfer, the equations representing initial conditions and boundary conditions are obtained. The “double ellipsoidal heat source + 3D Gaussian heat source”combination was chosen to construct the laser-electric arc hybrid heat source. The weld bead morphologies and the distribution of temperature, stress, displacement and plastic strains are numerically simulated. The actual welding experiments were performed by a hybrid laser-electric arc welding machine. The interaction mechanism between laser and electric arc in the hybrid welding of Mg alloys is discussed in detail. The hybrid heat source can promote the absorption of laser energy and electric arc in the molten pool, resulting in more uniform energy distribution in the molten pool and the corresponding improvement of welding parameters. This work can provide theoretical guidance and data supports for the optimization of the hybrid laser-electric arc welding processes for Mg alloys.
基金financial supports from the National Natural Science Foundation of China (No.52105357)the Natural Sciences and Engineering Research Council of Canada (NSERC) in the form of international research collaboration,the Natural Science Foundation for Youth of Jiangxi Education Department,China (No.DA202003181)+1 种基金the Foundation of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology of China (No.EG202103420)the Doctor Starting Foundation of Nanchang Hangkong University,China (No.EA202003208)。
文摘The effects of the base material(BM)location on the mechanical properties and the exfoliation corrosion performance of friction-stir-welded(FSWed)dissimilar 2024-to-5083 aluminum alloy joints were investigated.Scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),tensile tests and electrochemical experiments were conducted.The results revealed that the BM location had little effect on the tensile properties of the joints.The grain orientation spread(GOS)value of 2024 alloy side was lower than that of 5083 alloy side.Intergranular corrosion occurred mainly on the 2024 alloy side,while the grain interior of the 5083 alloy side was corroded due to the higher GOS value and dislocation density.The FSWed dissimilar joints with a superior exfoliation corrosion resistance could be achieved when the 5083 aluminum alloy with better corrosion performance was positioned on the retreating side.
基金Project (10902047,51265030) supported by the National Natural Science Foundation of China
文摘Friction stir keyholeless spot welding(FSKSW) using a retractable pin for 1.0 mm thick galvanized mild steel and 3 mm thick AZ31 B magnesium alloy in a lap configuration was investigated.The process variables were optimized in terms of the joint strength.The effects of the stacking sequence on joint formation and the joining mechanism of FSKSW AZ31B-to-mild steel joints were also analyzed.It shows that the process window and joint strength are strongly influenced by the stacking sequence of the workpieces.While the process window is narrow and unstable for FSKSW of a magnesium-to-steel stack-up,a desirable process was established for the steel-to-magnesium stacking sequence,a desirable process and higher strength joint can be got when the steel-to-magnesium stacking sequence.XRD phase and EPMA analyses of the FSKSW joint showed that the intermetallic compounds are formed at the steel-to-magnesium interface,and the element diffusion between the mild steel and AZ31 B magnesium alloy revealed that the joining methods for FSKSW joints is the main mechanical joining along with certain metallurgical bonding.
文摘The effects of welding heat input and post-weld heat treatment on the mechanical and microstructural aspects of dissimilarfriction stir welds of age-hardened AA7075-T6and strain hardenable AA5086-H32aluminium alloys were investigated.X-raydiffraction(XRD)residual stress analysis and tensile testing together with optical metallography and transmission electronmicroscopy(TEM)were performed to assess the effects of process parameters on welded joints.It was discovered that jointsproduced without heat sink exhibited more homogeneous stir zones than other joints.Of the natural aging time studied,higheramount of solid solution during rapid cooling of welds produced higher driving force for increase in hardness in the AA7075sideduring natural aging.Natural aging within stirring zone and thermo-mechanical affected zone of AA7075side resulted in a10to25MPa reduction in the residual stress in these zones;its effect decreased considerably in the welds performed without heat sink.Inaddition,natural aging had no noticeable effect on the joint strength.
基金financial support provided by Beijing Aeronautical Manufacturing Technology Research Institutethe help provided by Science and Technology, China, on Power Beam Processes Laboratory at Beijing Aeronautical Manufacturing Technology Research Institute, China
文摘Solid-state bonding between pure titanium and Ti6Al4V(TC4)alloy was conducted by a new bonding method named as rigid restraint thermal self-compressing bonding.Effects of heating time on bonding interface,atom diffusion and mechanical properties of the joints were studied.Results show that atom diffusion between pure titanium and TC4 alloy significantly takes place during bonding.The diffusion depths of Al and V in pure titanium side are increased with increasing heating time.Due to the enhancement of atom diffusion,bond quality of the bonding interface is improved along with the increase of heating time.The heating time seems to have little effect on microhardness distribution across the joint.However,the tensile strength and ductility of the joint have close relation to heating time.Prolonging heating time can improve the tensile strength and ductility of the joint,especially the latter.When the heating time increases to 450 s,solid-state joint with good combination of strength and ductility is attained.
基金Funded in Part by the Grant from Technology and Industry for National Defense,China(No.AXXD1818)。
文摘Based on the investigated microstructure of different zones in the annealed automatic gas tungsten arc weld joint of TA16 and TC4 titanium alloys,the mechanical property of them was assessed under fatigue crack growth rate tests.For evaluation of fatigue crack growth rate,three points bending specimens were used.The correlation between the range of stress intensity factor and crack growth rate was determined in different zones of the annealed weld joint.Fatigue crack growth rates were obviously different in different zones of weld joint of dissimilar titanium alloys,due to their different microstructures.Scanning electron microscope examinations were conducted on the fracture surface in order to determine the relevant fracture mechanisms and crack growth mechanisms with respect to the details of microstructure.
基金Supported by the National Natural Science Foundation of China(51801057,51702091,12104140)the Natural Science Foundation of Hubei Province(2020CFB245)+2 种基金the Hubei Province Education Department Scientific Research Plan Guiding Project(B2017215,B2021260)the Research Start-up Funding of Hubei University of Education(19RC03,20RC09)the 2021 Science and Technology Development Plan of Henan Province(212102210336)。
文摘In this research project,copper and stainless steel were connected by two laser welding methods:straight seam welding and swing welding.Then,electronic tensile test machine,X-ray diffractometer,scanning electron microscope and metallographic microscope were used to analyze the tensile properties,macroscopic and microscopic structure morphology and phase of the welded joint.Based on the experimental results,we determined that the strength of the straight seam welded joint was higher.Because of the intermetallic compound near the weld in the swing welding process,it leads to stress concentration,crack cracking and strength reduction.In addition,the oscillating laser beam also leads to the disorderly direction of columnar crystal and coarse structure,which makes the joint strength decrease.
基金the support provided by the China Scholarship Council(No.201806290070)the fund by the State Key Laboratory of Solidifi cation Processing in NWPU(No.2019-QZ-01)。
文摘This study focuses on the bonding interface characteristics and mechanical properties of the bobbin tool friction stir welded dissimilar AA6056 and AA2219 aluminum alloy joints using diff erent welding speeds.Voids arise solely in the stir zone at the AA2219 side.A distinct boundary with limited material mixing develops at the middle section of the bonding interface,while excellent material mixing with an irregularly jagged pattern forms at the top and bottom sections of the bonding interface.Increasing the welding speed,the material mixing is rarely changed at the middle section in comparison with the bottom section.Furthermore,a small diff erence between Guinier–Preston dissolution and Q phase precipitation leads to rare change of hardness in the heat aff ected zone(HAZ)at the AA6056 side.The increased hardness of the HAZ at the AA2219 side is attributed to avoidance of the dissolution ofθ’’phase precipitates.A maximum tensile strength of 181 MPa is obtained at 300 mm min-1.Fractures occur at the AA6056 side near the top and bottom surfaces and at the bonding interface in the middle section of the joints.The regions close to the top and bottom surfaces of the joints show a better ductility.
基金financially supported by the National Natural Science Foundation of China(No.51574196)the Natural Sciences and Engineering Research Council of Canada(NSERC)in the form of an international research collaboration+3 种基金the financial support by Premier’s Research Excellence Award(PREA)NSERC-Discovery Accelerator Supplement(DAS)AwardCanada Foundation for Innovation(CFI)Ryerson Research Chair(RRC)program。
文摘Cyclic deformation behavior of friction-stir-welded dissimilar AA2024-T351 to AA7075-T65 aluminum alloy joints was evaluated via stepwise tests at different strain rates,along with transmission electron microscopy examinations to characterize the precipitates required to assess internal stresses.Electron backscatter diffraction was employed to observe the inhomogeneous microstructures of the FSWed joints.Strain localization appeared in the heat affected zone(HAZ)of AA2024 side.After cyclic deformation of 500 cycles at a total strain amplitude of 0.5%,the strength of the dissimilar joints resumed basically to that of AA2024 base material.And the AA2024 HAZ was obviously hardened,which should be attributed to the introduced dislocations during cyclic deformation process.Cyclic hardening capacity of the joints increased with decreasing strain rate.
基金financially supported by the National Natural Science Foundation of China(No.51374048)the Fundamental Research Funds for the Central Universities(No.DUT16RC(3)009)
文摘The microstructure and mechanical properties of pulse metal inert-gas (MIG) welded dissimilar joints between 4 mm thick wrought 6061-T6 and cast A356-T6 aluminum alloy plates were investigated. The tensile strength of the joints reached 235 MPa, which is 83% of that of 6061 aluminum alloy, and then decreased with the increase of travel speed while keeping other welding parameters constant. The microstructure, composition and fractography of joints were examined by the optical microscopy (OM), scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). Grain boundary liquation and segregation occurred in the partially melted zone (PMZ) on 6061 aluminum alloy side, and brittle Fe-rich phases were observed in partially melted zone on A356 aluminum alloy side. The minimum microhardness appeared in heat-affected zone (HAZ) near A356 aluminum alloy substrate. The samples during tensile test failed mainly in PMZ and HAZ on A356 aluminum alloy side through mixed fracture mode with quasi cleavage and dimples on fracture surface.
基金supported by the International S&T Cooperation Program of China(ISTCP) under grant No.2012DFR50580
文摘Friction stir welding(FSW) was used to weld dissimilar Al-Mg-Si/Al-Zn-Mg aluminum alloys in this work.Influences of sheet configuration on microstructure and mechanical properties of the joints were mainly discussed.Results showed that rather different joint cross sections were obtained when using different sheet configurations.Coarser β' phases can be observed at the heat affected zone(HAZ) of the Al-Mg-Si alloy side,which was the main factor affecting the tensile properties and the fatigue properties.Tensile strengths of the dissimilar Al-Mg-Si/Al-Zn-Mg joints using both configurations were higher than that of the Al-Mg-Si FSW joint.When the Al-Zn-Mg alloy was located at the advancing side(AS),the joints owned better fatigue properties due to the bridging effect of the big secondary phase particles.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.52005240 and 52164045)Young Talent Program of Major Disciplines of Academic and Technical Leaders in Jiangxi Province(No.20212BCJ23028)Key Laboratory Fund Project(No.EG202180417).
文摘To improve tensile-shear properties of fiction stir lap welded(FSLW) dissimilar Al/Mg joints, pin-tip profiles were innovatively designed and welding speed was optimized, and effects of them on formation, interface microstructure and mechanical properties of different FSLW joints were investigated. With increasing the welding speed, the tensile-shear load of FSLW joints produced by three pins presents an increasing firstly and then decreasing trend. Compared with Rpin, the hook and hole defect in the joints made by S-pin and T-pin are eliminated owing to additional eccentric force. Moreover, the joints obtained by T-pin at 75 mm/min have the highest tensile-shear load, and a maximum value of 3.425 kN is produced, which increases by 96.8%.Meanwhile, the pin-tip profile improves significantly the interface reaction depending on the welding temperature. For R-pin, thick brittle intermetallic compounds of about 6.9 μm Al3Mg2and 13.3 μm Al12Mg17layers at the welding interface derived from diffusion reaction are formed, resulting in continuous cracks. However, using T-pin can raise the interface temperature, and which makes the interface liquefy locally to generate only 2.2 μm Al3Mg2layer and dispersive(Al12-Mg17+Mg) eutectic structure. This can release high residual stress and remove welding crack, consequently enhancing the interface properties of T-pin joints.
基金The authors gratefully acknowledge the National Natural Science Foundation of China(Grant Nos.U1760102 and 52101042).
文摘The Co-based alloy/AISI 410 stainless steel dissimilar welded joint was fabricated by the electron beam welding(EBW)technique.The anomalous microstructure containing the element transition zone(ETZ)and/or core of tail-like zone(CTLZ)is in the weld metal(WM)adjacent to the fusion line.The melting temperature difference between the WM and AISI 410 steel,melt stirring effect and element diffusion can trigger the formation of such anomalous microstructure.In particular,the larger distance of the region in WM away from the fusion line,the smaller CTLZ and larger ETZ occurred.Compared with the fine and ellipsoidal precipitates in the as-welded CTLZ,a large number of chain-type clustered precipitates were detected in the CTLZ and ETZ interface after the aging treatment at 566°C for 1000 h.The element diffusion under elevated temperature in WM is regarded as the crucial factor for such anomalous microstructure evolution during the aging treatment.
基金supported by the National Natural Science Foundation of China(No.51874201)the Science Technology Major Project of Liaoning Province,China(No.2019JH1/10100028)。
文摘Ultrasonic-stationary shoulder assisted friction stir welding(U-SSFSW)is a novel hybrid welding technique,which reveals promising prospect in joining Al/Mg dissimilar alloys.A thorough understanding of U-SSFSW process is imperative for the further application of this technique.Pigeon-inspired optimization(PIO)is a swarm intelligent optimization algorithm and is proposed in mathematical modeling and process optimization by artificial intelligence.In this study,PIO optimized artificial neural network(PIOANN)was firstly established to acquire the relationships between the inputs and output of the Al/Mg welding process by U-SSFSW technique.A reliable PIO-ANN was achieved and the joint with a tensile strength of 161 MPa was acquired under the PIO optimized parameters.This tensile strength is higher than any ever-reported results with the similar welding condition.The joint formation,microstructure,microhardness and fracture behaviors were systemically investigated based on the reported studies and the confirmation experiment of this study to explore the enhancing mechanism of U-SSFSW Al/Mg joint.
基金financially supported by the National Natural Science Foundation of China (Nos. 50974046 and 50904020)Twelfth Five-year Aerospace Project of China
文摘Plasma-MIG hybrid arc welding is a hybrid heating source welding method which is composed of plasma arc and MIG arc. During Plasma-MIG hybrid arc welding process, the interface behavior of copper and steel dissimilar alloy is investigated. The results show that electromagnetic stirring effect decreases and the heat input increases with the increase of outer plasma current in the hybrid arc welding process. The interface diffusion and interface thickness is controlled by the tradeoff of electromagnetic stirring effect degradation and heat input increase. The interface diffusion and interface thickness are controlled by decreasing the electromagnetic stirring force and increasing the heat input with the increase of plasma current in Cu/Fe plasma-MIG hybrid arc welding process.