期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Data-driven Transient Stability Assessment Based on Kernel Regression and Distance Metric Learning 被引量:6
1
作者 Xianzhuang Liu Yong Min +2 位作者 Lei Chen Xiaohua Zhang Changyou Feng 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第1期27-36,共10页
Transient stability assessment(TSA) is of great importance in power systems. For a given contingency, one of the most widely-used transient stability indices is the critical clearing time(CCT), which is a function of ... Transient stability assessment(TSA) is of great importance in power systems. For a given contingency, one of the most widely-used transient stability indices is the critical clearing time(CCT), which is a function of the pre-fault power flow.TSA can be regarded as the fitting of this function with the prefault power flow as the input and the CCT as the output. In this paper, a data-driven TSA model is proposed to estimate the CCT. The model is based on Mahalanobis-kernel regression,which employs the Mahalanobis distance in the kernel regression method to formulate a better regressor. A distance metric learning approach is developed to determine the problem-specific distance for TSA, which describes the dissimilarity between two power flow scenarios. The proposed model is more accurate compared to other data-driven methods, and its accuracy can be further improved by supplementing more training samples.Moreover, the model provides the probability density function of the CCT, and different estimations of CCT at different conservativeness levels. Test results verify the validity and the merits of the method. 展开更多
关键词 Transient stability assessment(TSA) critical clearing time(CCT) conservativeness level distance metric learning Nadaraya-Watson kernel regression Mahalanobis distance nonparametric regression DATA-DRIVEN
原文传递
Distance metric learning guided adaptive subspace semi-supervised clustering 被引量:1
2
作者 Xuesong Yin (12) yinxs@nuaa.edu.cn Enliang Hu (1) 《Frontiers of Computer Science》 SCIE EI CSCD 2011年第1期100-108,共9页
Most existing semi-supervised clustering algorithms are not designed for handling high- dimensional data. On the other hand, semi-supervised dimensionality reduction methods may not necessarily improve the clustering ... Most existing semi-supervised clustering algorithms are not designed for handling high- dimensional data. On the other hand, semi-supervised dimensionality reduction methods may not necessarily improve the clustering performance, due to the fact that the inherent relationship between subspace selection and clustering is ignored. In order to mitigate the above problems, we present a semi-supervised clustering algo- rithm using adaptive distance metric learning (SCADM) which performs semi-supervised clustering and distance metric learning simultaneously. SCADM applies the clustering results to learn a distance metric and then projects the data onto a low-dimensional space where the separability of the data is maximized. Experimental results on real-world data sets show that the proposed method can effectively deal with high-dimensional data and provides an appealing clustering performance. 展开更多
关键词 semi-supervise clustering pairwise con-straint distance metric learning data mining
原文传递
Discovery method for distributed denial-of-service attack behavior in SDNs using a feature-pattern graph model 被引量:2
3
作者 Ya XIAO Zhi-jie FAN +1 位作者 Amiya NAYAK Cheng-xiang TAN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第9期1195-1208,共14页
The security threats to software-defined networks(SDNs)have become a significant problem,generally because of the open framework of SDNs.Among all the threats,distributed denial-of-service(DDoS)attacks can have a deva... The security threats to software-defined networks(SDNs)have become a significant problem,generally because of the open framework of SDNs.Among all the threats,distributed denial-of-service(DDoS)attacks can have a devastating impact on the network.We propose a method to discover DDoS attack behaviors in SDNs using a feature-pattern graph model.The feature-pattern graph model presented employs network patterns as nodes and similarity as weighted links;it can demonstrate not only the traffc header information but also the relationships among all the network patterns.The similarity between nodes is modeled by metric learning and the Mahalanobis distance.The proposed method can discover DDoS attacks using a graph-based neighborhood classification method;it is capable of automatically finding unknown attacks and is scalable by inserting new nodes to the graph model via local or global updates.Experiments on two datasets prove the feasibility of the proposed method for attack behavior discovery and graph update tasks,and demonstrate that the graph-based method to discover DDoS attack behaviors substantially outperforms the methods compared herein. 展开更多
关键词 Software-defined network Distributed denial-of-service(DDoS) Behavior discovery distance metric learning Feature-pattern graph
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部