Based on photogrammetry technology,a novel localization method of micro-polishing robot,which is restricted within certain working space,is presented in this paper.On the basis of pinhole camera model,a new mathematic...Based on photogrammetry technology,a novel localization method of micro-polishing robot,which is restricted within certain working space,is presented in this paper.On the basis of pinhole camera model,a new mathematical model of vision localization of automated polishing robot is established.The vision localization is based on the distance-constraints of feature points.The method to solve the mathematical model is discussed.According to the characteristics of gray image,an adaptive method of automatic threshold selection based on connected components is presented.The center coordinate of the feature image point is resolved by bilinear interpolation gray square weighted algorithm.Finally,the mathematical model of testing system is verified by global localization test.The experimental results show that the vision localization system in working space has high precision.展开更多
The Tethered Space Net Robot(TSNR)is an innovative solution for active space debris capture and removal.Its large envelope and simple capture method make it an attractive option for this task.However,capturing maneuve...The Tethered Space Net Robot(TSNR)is an innovative solution for active space debris capture and removal.Its large envelope and simple capture method make it an attractive option for this task.However,capturing maneuverable debris with the flexible and elastic underactuated net poses significant challenges.To address this,a novel formation control method for the TSNR is proposed through the integration of differential game theory and robust adaptive control in this paper.Specifically,the trajectory of the TSNR is obtained through the solution of a real-time feedback pursuit-evasion game with a dynamic target,where the primary condition is to ensure the stability of the TSNR.Furthermore,to minimize tracking errors and maintain a specific configuration,a robust adaptive formation control scheme with Artificial Potential Field(APF)based on a Finite-Time Convergent Extended State Observer(FTCESO)is investigated.The proposed control method has a key advantage in suppressing complex oscillations by a new adaptive law,thus precisely maintaining the configuration.Finally,numerical simulations are performed to demonstrate the effectiveness of the proposed scheme.展开更多
This paper proposed a novel wireless location algorithm based on distance geometry (DG) constraint filtering for the time of arrival (TOA) of the signal (namely as DG-TOA). Filtering and processing of the observ...This paper proposed a novel wireless location algorithm based on distance geometry (DG) constraint filtering for the time of arrival (TOA) of the signal (namely as DG-TOA). Filtering and processing of the observed data and leading to the mathematical formulas based on DG-TOA algorithm are applied to location, also play crucial rules. Simulation results show that the proposed DG-TOA algorithm can provide more valid observation data and be more precise than least square estimate (LSE) algorithm in dense, multi-route, indoor circumstances with the ranging estimation error.展开更多
Graphs have been widely used for complex data representation in many real applications, such as social network, bioinformatics, and computer vision. Therefore, graph similarity join has become imperative for integrati...Graphs have been widely used for complex data representation in many real applications, such as social network, bioinformatics, and computer vision. Therefore, graph similarity join has become imperative for integrating noisy and inconsistent data from multiple data sources. The edit distance is commonly used to measure the similarity between graphs. The graph similarity join problem studied in this paper is based on graph edit distance constraints. To accelerate the similarity join based on graph edit distance, in the paper, we make use of a preprocessing strategy to remove the mismatching graph pairs with significant differences. Then a novel method of building indexes for each graph is proposed by grouping the nodes which can be reached in k hops for each key node with structure conservation, which is the k-hop tree based indexing method. As for each candidate pair, we propose a similarity computation algorithm with boundary filtering, which can be applied with good efficiency and effectiveness. Experiments on real and synthetic graph databases also confirm that our method can achieve good join quality in graph similarity join. Besides, the join process can be finished in polynomial time.展开更多
To control missile's miss distance as well as terminal impact angle, by involving the timeto-go-nth power in the cost function, an extended optimal guidance law against a constant maneuvering target or a stationary t...To control missile's miss distance as well as terminal impact angle, by involving the timeto-go-nth power in the cost function, an extended optimal guidance law against a constant maneuvering target or a stationary target is proposed using the linear quadratic optimal control theory.An extended trajectory shaping guidance(ETSG) law is then proposed under the assumption that the missile-target relative velocity is constant and the line of sight angle is small. For a lag-free ETSG system, closed-form solutions for the missile's acceleration command are derived by the method of Schwartz inequality and linear simulations are performed to verify the closed-form results. Normalized adjoint systems for miss distance and terminal impact angle error are presented independently for stationary targets and constant maneuvering targets, respectively. Detailed discussions about the terminal misses and impact angle errors induced by terminal impact angle constraint, initial heading error, seeker zero position errors and target maneuvering, are performed.展开更多
基金supported by the National High Technology Research and Development Program of China (Grant No. 2006AA04Z214)the National Natural Science Foundation of China (Grant No. 50575092)
文摘Based on photogrammetry technology,a novel localization method of micro-polishing robot,which is restricted within certain working space,is presented in this paper.On the basis of pinhole camera model,a new mathematical model of vision localization of automated polishing robot is established.The vision localization is based on the distance-constraints of feature points.The method to solve the mathematical model is discussed.According to the characteristics of gray image,an adaptive method of automatic threshold selection based on connected components is presented.The center coordinate of the feature image point is resolved by bilinear interpolation gray square weighted algorithm.Finally,the mathematical model of testing system is verified by global localization test.The experimental results show that the vision localization system in working space has high precision.
基金supported by the National Natural Science Foundation of China(Nos.62222313,62173275,62327809,62303381,and 62303312)in part by the China Postdoctoral Science Foundation(No.2023M732225).
文摘The Tethered Space Net Robot(TSNR)is an innovative solution for active space debris capture and removal.Its large envelope and simple capture method make it an attractive option for this task.However,capturing maneuverable debris with the flexible and elastic underactuated net poses significant challenges.To address this,a novel formation control method for the TSNR is proposed through the integration of differential game theory and robust adaptive control in this paper.Specifically,the trajectory of the TSNR is obtained through the solution of a real-time feedback pursuit-evasion game with a dynamic target,where the primary condition is to ensure the stability of the TSNR.Furthermore,to minimize tracking errors and maintain a specific configuration,a robust adaptive formation control scheme with Artificial Potential Field(APF)based on a Finite-Time Convergent Extended State Observer(FTCESO)is investigated.The proposed control method has a key advantage in suppressing complex oscillations by a new adaptive law,thus precisely maintaining the configuration.Finally,numerical simulations are performed to demonstrate the effectiveness of the proposed scheme.
基金supported by the open research fund of National Mobile Communications Research Laboratory (W200906)the Fundamental Research Funds for the Central Universities (2009JBM012)
文摘This paper proposed a novel wireless location algorithm based on distance geometry (DG) constraint filtering for the time of arrival (TOA) of the signal (namely as DG-TOA). Filtering and processing of the observed data and leading to the mathematical formulas based on DG-TOA algorithm are applied to location, also play crucial rules. Simulation results show that the proposed DG-TOA algorithm can provide more valid observation data and be more precise than least square estimate (LSE) algorithm in dense, multi-route, indoor circumstances with the ranging estimation error.
文摘Graphs have been widely used for complex data representation in many real applications, such as social network, bioinformatics, and computer vision. Therefore, graph similarity join has become imperative for integrating noisy and inconsistent data from multiple data sources. The edit distance is commonly used to measure the similarity between graphs. The graph similarity join problem studied in this paper is based on graph edit distance constraints. To accelerate the similarity join based on graph edit distance, in the paper, we make use of a preprocessing strategy to remove the mismatching graph pairs with significant differences. Then a novel method of building indexes for each graph is proposed by grouping the nodes which can be reached in k hops for each key node with structure conservation, which is the k-hop tree based indexing method. As for each candidate pair, we propose a similarity computation algorithm with boundary filtering, which can be applied with good efficiency and effectiveness. Experiments on real and synthetic graph databases also confirm that our method can achieve good join quality in graph similarity join. Besides, the join process can be finished in polynomial time.
基金co-supported by the National Natural Scienc Foundation of China (No. 61172182)
文摘To control missile's miss distance as well as terminal impact angle, by involving the timeto-go-nth power in the cost function, an extended optimal guidance law against a constant maneuvering target or a stationary target is proposed using the linear quadratic optimal control theory.An extended trajectory shaping guidance(ETSG) law is then proposed under the assumption that the missile-target relative velocity is constant and the line of sight angle is small. For a lag-free ETSG system, closed-form solutions for the missile's acceleration command are derived by the method of Schwartz inequality and linear simulations are performed to verify the closed-form results. Normalized adjoint systems for miss distance and terminal impact angle error are presented independently for stationary targets and constant maneuvering targets, respectively. Detailed discussions about the terminal misses and impact angle errors induced by terminal impact angle constraint, initial heading error, seeker zero position errors and target maneuvering, are performed.