期刊文献+
共找到93篇文章
< 1 2 5 >
每页显示 20 50 100
Dynamic access task scheduling of LEO constellation based on space-based distributed computing
1
作者 LIU Wei JIN Yifeng +2 位作者 ZHANG Lei GAO Zihe TAO Ying 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期842-854,共13页
A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process u... A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process under a series of complex constraints,which is important for enhancing the matching between resources and requirements.A complex algorithm is not available because that the LEO on-board resources is limi-ted.The proposed genetic algorithm(GA)based on two-dimen-sional individual model and uncorrelated single paternal inheri-tance method is designed to support distributed computation to enhance the feasibility of on-board application.A distributed system composed of eight embedded devices is built to verify the algorithm.A typical scenario is built in the system to evalu-ate the resource allocation process,algorithm mathematical model,trigger strategy,and distributed computation architec-ture.According to the simulation and measurement results,the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91%in a typical scene.The response time is decreased by 40%com-pared with the conditional GA. 展开更多
关键词 beam resource allocation distributed computing low Earth obbit(LEO)constellation spacecraft access task scheduling
下载PDF
A Public Blockchain Consensus Mechanism for Fault-Tolerant Distributed Computing in LEO Satellite Communications 被引量:2
2
作者 Zhen Zhang Bing Guo +3 位作者 Lidong Zhu Yan Shen Chaoxia Qin Chengjie Li 《China Communications》 SCIE CSCD 2022年第7期110-123,共14页
In LEO(Low Earth Orbit)satellite communication systems,the satellite network is made up of a large number of satellites,the dynamically changing network environment affects the results of distributed computing.In orde... In LEO(Low Earth Orbit)satellite communication systems,the satellite network is made up of a large number of satellites,the dynamically changing network environment affects the results of distributed computing.In order to improve the fault tolerance rate,a novel public blockchain consensus mechanism that applies a distributed computing architecture in a public network is proposed.Redundant calculation of blockchain ensures the credibility of the results;and the transactions with calculation results of a task are stored distributed in sequence in Directed Acyclic Graphs(DAG).The transactions issued by nodes are connected to form a net.The net can quickly provide node reputation evaluation that does not rely on third parties.Simulations show that our proposed blockchain has the following advantages:1.The task processing speed of the blockchain can be close to that of the fastest node in the entire blockchain;2.When the tasks’arrival time intervals and demanded working nodes(WNs)meet certain conditions,the network can tolerate more than 50%of malicious devices;3.No matter the number of nodes in the blockchain is increased or reduced,the network can keep robustness by adjusting the task’s arrival time interval and demanded WNs. 展开更多
关键词 distributed computing public blockchain network consensus mechanism CREDIBILITY FAULTTOLERANCE
下载PDF
A Distributed Computing Framework Based on Lightweight Variance Reduction Method to Accelerate Machine Learning Training on Blockchain 被引量:1
3
作者 Zhen Huang Feng Liu +2 位作者 Mingxing Tang Jinyan Qiu Yuxing Peng 《China Communications》 SCIE CSCD 2020年第9期77-89,共13页
To security support large-scale intelligent applications,distributed machine learning based on blockchain is an intuitive solution scheme.However,the distributed machine learning is difficult to train due to that the ... To security support large-scale intelligent applications,distributed machine learning based on blockchain is an intuitive solution scheme.However,the distributed machine learning is difficult to train due to that the corresponding optimization solver algorithms converge slowly,which highly demand on computing and memory resources.To overcome the challenges,we propose a distributed computing framework for L-BFGS optimization algorithm based on variance reduction method,which is a lightweight,few additional cost and parallelized scheme for the model training process.To validate the claims,we have conducted several experiments on multiple classical datasets.Results show that our proposed computing framework can steadily accelerate the training process of solver in either local mode or distributed mode. 展开更多
关键词 machine learning optimization algorithm blockchain distributed computing variance reduction
下载PDF
Wireless distributed computing for cyclostationary feature detection 被引量:1
4
作者 Mohammed I.M. Alfaqawi Jalel Chebil +1 位作者 Mohamed Hadi Habaebi Dinesh Datla 《Digital Communications and Networks》 SCIE 2016年第1期46-55,共10页
Recently, wireless distributed computing (WDC) concept has emerged promising manifolds improvements to current wireless technotogies. Despite the various expected benefits of this concept, significant drawbacks were... Recently, wireless distributed computing (WDC) concept has emerged promising manifolds improvements to current wireless technotogies. Despite the various expected benefits of this concept, significant drawbacks were addressed in the open literature. One of WDC key challenges is the impact of wireless channel quality on the load of distributed computations. Therefore, this research investigates the wireless channel impact on WDC performance when the tatter is applied to spectrum sensing in cognitive radio (CR) technology. However, a trade- off is found between accuracy and computational complexity in spectrum sensing approaches. Increasing these approaches accuracy is accompanied by an increase in computational complexity. This results in greater power consumption and processing time. A novel WDC scheme for cyclostationary feature detection spectrum sensing approach is proposed in this paper and thoroughly investigated. The benefits of the proposed scheme are firstly presented. Then, the impact of the wireless channel of the proposed scheme is addressed considering two scenarios. In the first scenario, workload matrices are distributed over the wireless channel 展开更多
关键词 Cotnttive radio Spectrum sensing Cyclostattonary feature detection FFT time smoothing algorithms Wireless distributed computing
下载PDF
Dynamic Allocation Strategy Based on Pre-allocation and Agent to Implement Ada95's Distributed Computing
5
作者 Zhu Fu-xi, Fu Jian-ming,Wu Chan-le, Cao Zheng School of Computer,Wuhan University,Wuhan 430072,Hubei, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第04A期1061-1064,共4页
This paper discusses the model of how the Agent is applied to implement distributed computing of Ada95 and presents a dynamic allocation strategy for distributed computing that based on pre-allocationand Agent. The ... This paper discusses the model of how the Agent is applied to implement distributed computing of Ada95 and presents a dynamic allocation strategy for distributed computing that based on pre-allocationand Agent. The aim of this strategy is realizing dynamic equilibrium allocation. 展开更多
关键词 distributed computing ADA95 AGENT equilibrium allocation
下载PDF
DCCS:A General-Purpose Distributed Cryptographic Computing System
6
作者 JIANG Zhonghua LIN Dongdai +1 位作者 XU Lin LIN Lei 《Wuhan University Journal of Natural Sciences》 CAS 2007年第1期46-50,共5页
Distributed cryptographic computing system plays an important role since cryptographic computing is extremely computation sensitive. However, no general cryptographic computing system is available. Grid technology can... Distributed cryptographic computing system plays an important role since cryptographic computing is extremely computation sensitive. However, no general cryptographic computing system is available. Grid technology can give an efficient computational support for cryptographic applications. Therefore, a general-purpose grid-based distributed computing system called DCCS is put forward in this paper. The architecture of DCCS is simply described at first. The policy of task division adapted in DCCS is then presented. The method to manage subtask is further discussed in detail. Furthermore, the building and execution process of a computing job is revealed. Finally, the details of DCCS implementation under Globus Toolkit 4 are illustrated. 展开更多
关键词 CRYPTOGRAPHY distributed computing execution plan computational grid
下载PDF
A Jave-Based Multi-tier Distributed Object Enterprise Computing Model
7
作者 李春林 李腊元 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第4期85-90,共6页
In this paper, we adopt Java platform to achieve a multi-tier distributed object enterprise computing model which provides an open, flexible, robust and cross-platform standard for enterprise applications of new gener... In this paper, we adopt Java platform to achieve a multi-tier distributed object enterprise computing model which provides an open, flexible, robust and cross-platform standard for enterprise applications of new generation. In addition to this model, we define remote server objects as session or entity objects according to their roles in a distributed application server, which separate information details from business operations for software reuse. A web store system is implement by using this multi-tier distributed object enterprise computing model. 展开更多
关键词 distributed object computing Remote method invocation (RMI) Java Servlet.
下载PDF
Study on the Distributed Routing Algorithm and Its Security for Peer-to-Peer Computing
8
作者 ZHOUShi-jie 《Journal of Electronic Science and Technology of China》 2005年第2期187-188,共2页
关键词 peer-to-peer computing P2P distributed computing information security distributed routing algorithm bidding-electing algorithm one-way accumulator
下载PDF
L_(1)-Smooth SVM with Distributed Adaptive Proximal Stochastic Gradient Descent with Momentum for Fast Brain Tumor Detection
9
作者 Chuandong Qin Yu Cao Liqun Meng 《Computers, Materials & Continua》 SCIE EI 2024年第5期1975-1994,共20页
Brain tumors come in various types,each with distinct characteristics and treatment approaches,making manual detection a time-consuming and potentially ambiguous process.Brain tumor detection is a valuable tool for ga... Brain tumors come in various types,each with distinct characteristics and treatment approaches,making manual detection a time-consuming and potentially ambiguous process.Brain tumor detection is a valuable tool for gaining a deeper understanding of tumors and improving treatment outcomes.Machine learning models have become key players in automating brain tumor detection.Gradient descent methods are the mainstream algorithms for solving machine learning models.In this paper,we propose a novel distributed proximal stochastic gradient descent approach to solve the L_(1)-Smooth Support Vector Machine(SVM)classifier for brain tumor detection.Firstly,the smooth hinge loss is introduced to be used as the loss function of SVM.It avoids the issue of nondifferentiability at the zero point encountered by the traditional hinge loss function during gradient descent optimization.Secondly,the L_(1) regularization method is employed to sparsify features and enhance the robustness of the model.Finally,adaptive proximal stochastic gradient descent(PGD)with momentum,and distributed adaptive PGDwithmomentum(DPGD)are proposed and applied to the L_(1)-Smooth SVM.Distributed computing is crucial in large-scale data analysis,with its value manifested in extending algorithms to distributed clusters,thus enabling more efficient processing ofmassive amounts of data.The DPGD algorithm leverages Spark,enabling full utilization of the computer’s multi-core resources.Due to its sparsity induced by L_(1) regularization on parameters,it exhibits significantly accelerated convergence speed.From the perspective of loss reduction,DPGD converges faster than PGD.The experimental results show that adaptive PGD withmomentumand its variants have achieved cutting-edge accuracy and efficiency in brain tumor detection.Frompre-trained models,both the PGD andDPGD outperform other models,boasting an accuracy of 95.21%. 展开更多
关键词 Support vector machine proximal stochastic gradient descent brain tumor detection distributed computing
下载PDF
G-Phenomena as a Base of Scalable Distributed Computing—G-Phenomena in Moore’s Law
10
作者 Karolj Skala Davor Davidovic +1 位作者 Tomislav Lipic Ivan Sovic 《International Journal of Internet and Distributed Systems》 2014年第1期1-4,共4页
Today we witness the exponential growth of scientific research. This fast growth is possible thanks to the rapid development of computing systems since its first days in 1947 and the invention of transistor till the p... Today we witness the exponential growth of scientific research. This fast growth is possible thanks to the rapid development of computing systems since its first days in 1947 and the invention of transistor till the present days with high performance and scalable distributed computing systems. This fast growth of computing systems was first observed by Gordon E. Moore in 1965 and postulated as Moore’s Law. For the development of the scalable distributed computing systems, the year 2000 was a very special year. The first GHz speed processor, GB size memory and GB/s data transmission through network were achieved. Interestingly, in the same year the usable Grid computing systems emerged, which gave a strong impulse to a rapid development of distributed computing systems. This paper recognizes these facts that occurred in the year 2000, as the G-phenomena, a millennium cornerstone for the rapid development of scalable distributed systems evolved around the Grid and Cloud computing paradigms. 展开更多
关键词 Historical Development of computing G-Phenomena Moore’s Law distributed computing SCALABILITY Grid computing Cloud computing Component
下载PDF
Video-based Person Re-identification Based on Distributed Cloud Computing
11
作者 Chengyan Zhong Xiaoyu Jiang Guanqiu Qi 《Journal of Artificial Intelligence and Technology》 2021年第2期110-120,共11页
Person re-identification has been a hot research issues in the field of computer vision.In recent years,with the maturity of the theory,a large number of excellent methods have been proposed.However,large-scale data s... Person re-identification has been a hot research issues in the field of computer vision.In recent years,with the maturity of the theory,a large number of excellent methods have been proposed.However,large-scale data sets and huge networks make training a time-consuming process.At the same time,the parameters and their values generated during the training process also take up a lot of computer resources.Therefore,we apply distributed cloud computing method to perform person re-identification task.Using distributed data storage method,pedestrian data sets and parameters are stored in cloud nodes.To speed up operational efficiency and increase fault tolerance,we add data redundancy mechanism to copy and store data blocks to different nodes,and we propose a hash loop optimization algorithm to optimize the data distribution process.Moreover,we assign different layers of the re-identification network to different nodes to complete the training in the way of model parallelism.By comparing and analyzing the accuracy and operation speed of the distributed model on the video-based dataset MARS,the results show that our distributed model has a faster training speed. 展开更多
关键词 person re-identification distributed cloud computing data redundancy mechanism
下载PDF
Optimizing Healthcare Big Data Processing with Containerized PySpark and Parallel Computing: A Study on ETL Pipeline Efficiency
12
作者 Ehsan Soltanmohammadi Neset Hikmet 《Journal of Data Analysis and Information Processing》 2024年第4期544-565,共22页
In this study, we delve into the realm of efficient Big Data Engineering and Extract, Transform, Load (ETL) processes within the healthcare sector, leveraging the robust foundation provided by the MIMIC-III Clinical D... In this study, we delve into the realm of efficient Big Data Engineering and Extract, Transform, Load (ETL) processes within the healthcare sector, leveraging the robust foundation provided by the MIMIC-III Clinical Database. Our investigation entails a comprehensive exploration of various methodologies aimed at enhancing the efficiency of ETL processes, with a primary emphasis on optimizing time and resource utilization. Through meticulous experimentation utilizing a representative dataset, we shed light on the advantages associated with the incorporation of PySpark and Docker containerized applications. Our research illuminates significant advancements in time efficiency, process streamlining, and resource optimization attained through the utilization of PySpark for distributed computing within Big Data Engineering workflows. Additionally, we underscore the strategic integration of Docker containers, delineating their pivotal role in augmenting scalability and reproducibility within the ETL pipeline. This paper encapsulates the pivotal insights gleaned from our experimental journey, accentuating the practical implications and benefits entailed in the adoption of PySpark and Docker. By streamlining Big Data Engineering and ETL processes in the context of clinical big data, our study contributes to the ongoing discourse on optimizing data processing efficiency in healthcare applications. The source code is available on request. 展开更多
关键词 Big Data Engineering ETL Healthcare Sector Containerized Applications distributed computing Resource Optimization Data Processing Efficiency
下载PDF
Distributed Computation Models for Data Fusion System Simulation
13
作者 张岩 曾涛 +1 位作者 龙腾 崔智社 《Journal of Beijing Institute of Technology》 EI CAS 2001年第3期291-297,共7页
An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advan... An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advanced C3I systems. Two architectures are provided and verified: one is based on pure TCP/IP protocol and C/S model, and implemented with Winsock, the other is based on CORBA (common object request broker architecture). The performance of data fusion simulation system, i.e. reliability, flexibility and scalability, is improved and enhanced by two models. The study of them makes valuable explore on incorporating the distributed computation concepts into radar system simulation techniques. 展开更多
关键词 radar system computer network data fusion SIMULATION distributed computation
下载PDF
Intelligent Ironmaking Optimization Service on a Cloud Computing Platform by Digital Twin 被引量:4
14
作者 Heng Zhou Chunjie Yang Youxian Sun 《Engineering》 SCIE EI 2021年第9期1274-1281,共8页
The shortage of computation methods and storage devices has largely limited the development of multiobjective optimization in industrial processes.To improve the operational levels of the process industries,we propose... The shortage of computation methods and storage devices has largely limited the development of multiobjective optimization in industrial processes.To improve the operational levels of the process industries,we propose a multi-objective optimization framework based on cloud services and a cloud distribution system.Real-time data from manufacturing procedures are first temporarily stored in a local database,and then transferred to the relational database in the cloud.Next,a distribution system with elastic compute power is set up for the optimization framework.Finally,a multi-objective optimization model based on deep learning and an evolutionary algorithm is proposed to optimize several conflicting goals of the blast furnace ironmaking process.With the application of this optimization service in a cloud factory,iron production was found to increase by 83.91 t∙d^(-1),the coke ratio decreased 13.50 kg∙t^(-1),and the silicon content decreased by an average of 0.047%. 展开更多
关键词 Cloud factory Blast furnace Multi-objective optimization distributed computation
下载PDF
A Distributed Framework for Large-scale Protein-protein Interaction Data Analysis and Prediction Using MapReduce 被引量:3
15
作者 Lun Hu Shicheng Yang +3 位作者 Xin Luo Huaqiang Yuan Khaled Sedraoui MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第1期160-172,共13页
Protein-protein interactions are of great significance for human to understand the functional mechanisms of proteins.With the rapid development of high-throughput genomic technologies,massive protein-protein interacti... Protein-protein interactions are of great significance for human to understand the functional mechanisms of proteins.With the rapid development of high-throughput genomic technologies,massive protein-protein interaction(PPI)data have been generated,making it very difficult to analyze them efficiently.To address this problem,this paper presents a distributed framework by reimplementing one of state-of-the-art algorithms,i.e.,CoFex,using MapReduce.To do so,an in-depth analysis of its limitations is conducted from the perspectives of efficiency and memory consumption when applying it for large-scale PPI data analysis and prediction.Respective solutions are then devised to overcome these limitations.In particular,we adopt a novel tree-based data structure to reduce the heavy memory consumption caused by the huge sequence information of proteins.After that,its procedure is modified by following the MapReduce framework to take the prediction task distributively.A series of extensive experiments have been conducted to evaluate the performance of our framework in terms of both efficiency and accuracy.Experimental results well demonstrate that the proposed framework can considerably improve its computational efficiency by more than two orders of magnitude while retaining the same high accuracy. 展开更多
关键词 distributed computing large-scale prediction machine learning MAPREDUCE protein-protein interaction(PPI)
下载PDF
A Mobile Agent-Based Prototype of HeterogeneousDistributed Virtual Environment Systems 被引量:1
16
作者 Ji Qingge(Dept. of Computer Science & Engineering, Harbin Institute of Technology, 150001, P. R. China)Wang Dongmu(Beijing Simulation Center, 100854, P. R. China)Hong Bingrong(Dept. of Computer Science & Engineering, Harbin Institute of Technology, 150001 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第2期61-65,共5页
Mobile agents provide a new method for the distributed computation. This paper presents the advantages of using mobile agents in a distributed virtual environment (DVE) system, and describes the architecture of hetero... Mobile agents provide a new method for the distributed computation. This paper presents the advantages of using mobile agents in a distributed virtual environment (DVE) system, and describes the architecture of heterogeneous computer's distributed virtual environment system (HCWES) designed to populate some mobile agents as well as stationary agents. Finally, the paper introduces how heterogeneous computer network communication is to be realized. 展开更多
关键词 distributed virtual environment Mobile agent distributed computing
下载PDF
Automatic architecture design for distributed quantum computing
17
作者 Ting-Yu Luo Yu-Zhen Zheng +1 位作者 Xiang Fu Yu-Xin Deng 《Chinese Physics B》 SCIE EI CAS 2024年第12期45-59,共15页
In distributed quantum computing(DQC),quantum hardware design mainly focuses on providing as many as possible high-quality inter-chip connections.Meanwhile,quantum software tries its best to reduce the required number... In distributed quantum computing(DQC),quantum hardware design mainly focuses on providing as many as possible high-quality inter-chip connections.Meanwhile,quantum software tries its best to reduce the required number of remote quantum gates between chips.However,this“hardware first,software follows”methodology may not fully exploit the potential of DQC.Inspired by classical software-hardware co-design,this paper explores the design space of application-specific DQC architectures.More specifically,we propose Auto Arch,an automated quantum chip network(QCN)structure design tool.With qubits grouping followed by a customized QCN design,AutoArch can generate a near-optimal DQC architecture suitable for target quantum algorithms.Experimental results show that the DQC architecture generated by Auto Arch can outperform other general QCN architectures when executing target quantum algorithms. 展开更多
关键词 distributed quantum computing quantum architecture quantum circuit partitioning
下载PDF
A Distributed LRTCO Algorithm in Large-Scale DVE Multimedia Systems
18
作者 Hangjun Zhou Guang Sun +3 位作者 Sha Fu Wangdong Jiang Tingting Xie Danqing Duan 《Computers, Materials & Continua》 SCIE EI 2018年第7期73-89,共17页
In the large-scale Distributed Virtual Environment(DVE)multimedia systems,one of key challenges is to distributedly preserve causal order delivery of messages in real time.Most of the existing causal order control app... In the large-scale Distributed Virtual Environment(DVE)multimedia systems,one of key challenges is to distributedly preserve causal order delivery of messages in real time.Most of the existing causal order control approaches with real-time constraints use vector time as causal control information which is closely coupled with system scales.As the scale expands,each message is attached a large amount of control information that introduces too much network transmission overhead to maintain the real-time causal order delivery.In this article,a novel Lightweight Real-Time Causal Order(LRTCO)algorithm is proposed for large-scale DVE multimedia systems.LRTCO predicts and compares the network transmission times of messages so as to select the proper causal control information of which the amount is dynamically adapted to the network latency variations and unconcerned with system scales.The control information in LRTCO is effective to preserve causal order delivery of messages and lightweight to maintain the real-time property of DVE systems.Experimental results demonstrate that LRTCO costs low transmission overhead and communication bandwidth,reduces causal order violations efficiently,and improves the scalability of DVE systems. 展开更多
关键词 distributed computing distributed virtual environment multimedia system causality violation causal order delivery real time
下载PDF
A Pre-Allocation Strategy for Implement ADA95's Distrbuted Computing
19
作者 ZHU Fu-xi FU Jian-ming +1 位作者 JIN Tao PENG Rong (College of Mathematics and Copmputer Science, Wuhan University,Wuhan 430072,China) 《Wuhan University Journal of Natural Sciences》 CAS 2000年第1期27-30,共4页
In order to realize distributed computing of Ada95, this paper discusses Ada95's distributed system model and an implement model of Ada95's distributed computing-- workstation cluster model. Under this model,... In order to realize distributed computing of Ada95, this paper discusses Ada95's distributed system model and an implement model of Ada95's distributed computing-- workstation cluster model. Under this model, we presents a pre-allocation strategy for allocating the computation quantity of distributed units evenly among workstations and also reducing the communication expense between those distributed units. 展开更多
关键词 distributed computing ADA95 allocation strategy communication expense
下载PDF
Cluster-Based Distributed Algorithms for Very Large Linear Equations
20
作者 古志民 MARTA Kwiatkowska 付引霞 《Journal of Beijing Institute of Technology》 EI CAS 2006年第1期66-70,共5页
In many applications such as computational fluid dynamics and weather prediction, as well as image processing and state of Markov chain etc., the grade of matrix n is often very large, and any serial algorithm cannot ... In many applications such as computational fluid dynamics and weather prediction, as well as image processing and state of Markov chain etc., the grade of matrix n is often very large, and any serial algorithm cannot solve the problems. A distributed cluster-based solution for very large linear equations is discussed, it includes the definitions of notations, partition of matrix, communication mechanism, and a master-slaver algorithm etc., the computing cost is O(n^3/N), the memory cost is O(n^2/N), the I/O cost is O(n^2/N), and the com- munication cost is O(Nn ), here, N is the number of computing nodes or processes. Some tests show that the solution could solve the double type of matrix under 10^6 × 10^6 effectively. 展开更多
关键词 Gaussian elimination PARTITION cluster-based distributed computing
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部