This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on th...This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on the global information about the communication topology consists of two layers.Different from most existing distributed fault-tolerant control(FTC)protocols where the fault in one agent may propagate over network,the developed control method can eliminate the phenomenon of fault propagation.Based on the hierarchical control strategy,the FTCC problem with a directed graph can be simplified to the distributed containment control of the upper layer and the fault-tolerant tracking control of the lower layer.Finally,simulation results are given to demonstrate the effectiveness of the proposed control protocol.展开更多
Droop control is one of the main control strategies of islanded microgrid(MG),but the droop control cannot achieve reasonable power distribution of microgrid,resulting in frequency and voltage deviation from the ratin...Droop control is one of the main control strategies of islanded microgrid(MG),but the droop control cannot achieve reasonable power distribution of microgrid,resulting in frequency and voltage deviation from the rating value,which needs the upper control link to eliminate the deviation.However,at present,most layered control requires a centralized control center,which excessively relies on microgrid central controller(MGCC)and real-time communication among distributed generation(DG),which has certain limitations.To solve the above problems,this paper proposes a hierarchical distributed power and power quality optimization strategy based on multi-agent finite time consistency algorithm(MA-FTCA).Firstly,based on the first layer droop control,MA-FTCA is applied to introduce frequency and voltage compensation to stabilize the system frequency and voltage at the rated value.Secondly,in the third layer,the MA-FTCA is adopted to estimate the total active power and total reactive power spare capacity of the system,to realize the reasonable distribution of active power and reactive power output of each DG according to its proportion of spare capacity when the system load side changes.The control strategy proposed in this paper adopts a completely distributed control method and does not need a centralized control center in each layer of control.Finally,MATLAB/Simulink simulation platform is used to verify the correctness and effectiveness of the proposed optimization strategy.展开更多
The large scale and complex manufacturing systems have a hierarchical structure where a system is composed several lines with some stations and each station also have several machines and so on. In such a hierarchical...The large scale and complex manufacturing systems have a hierarchical structure where a system is composed several lines with some stations and each station also have several machines and so on. In such a hierarchical structure, the controllers are geographically distributed according to their physical structure. So it is desirable to realize the hierarchical and distributed control. In this paper, a methodology is presented using Petri nets for hierarchical and distributed control. The Petri net representation of discrete event manufacturing processes is decomposed and distributed into the machine controllers, which are coordinated through communication between the coordinator and machine controllers so that the decomposed transitions fire at the same time. Implementation of a hierarchical and distributed control system is described for an example robotic manufacturing system. The demonstrations show that the proposed system can be used as an effective tool for consistent modeling and control of large and complex manufacturing systems.展开更多
作为一种适应高比例分布式新能源接入的新型配电网架构,蜂巢状有源配电网利用多端口能量枢纽(multi-port energy hub,MEH)可实现多微电网/配网单元间功率的互联互济,如MEH中包含储能设备,可以进一步提升新能源利用率和电网可靠性。文中...作为一种适应高比例分布式新能源接入的新型配电网架构,蜂巢状有源配电网利用多端口能量枢纽(multi-port energy hub,MEH)可实现多微电网/配网单元间功率的互联互济,如MEH中包含储能设备,可以进一步提升新能源利用率和电网可靠性。文中提出一种含储能的MEH及其分层协调控制策略。上层控制根据储能系统的荷电状态和配电网运行状态协调控制储能变流器与各并网端口变流器之间的功率分配,使得MEH在平抑新能源波动、配网故障恢复等运行模式下均能够对内部储能系统进行能量管理。下层控制通过将储能变流器有功功率的微分值反馈至储能系统控制环路进行补偿,提高储能变流器输入/输出有功功率响应速度。文中设计了MEH控制系统关键参数,利用MATLAB/Simulink对MEH在配电系统中的应用进行仿真。不同工况下的仿真对比验证了所提分层协调控制策略的有效性,证明该策略能够延长储能系统工作时间,提高储能系统有功功率变化率,减小直流母线的电压波动。展开更多
基金supported in part by the National Natural Science Foundation of China(61873056,61621004,61420106016)the Fundamental Research Funds for the Central Universities in China(N2004001,N2004002,N182608004)the Research Fund of State Key Laboratory of Synthetical Automation for Process Industries in China(2013ZCX01)。
文摘This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on the global information about the communication topology consists of two layers.Different from most existing distributed fault-tolerant control(FTC)protocols where the fault in one agent may propagate over network,the developed control method can eliminate the phenomenon of fault propagation.Based on the hierarchical control strategy,the FTCC problem with a directed graph can be simplified to the distributed containment control of the upper layer and the fault-tolerant tracking control of the lower layer.Finally,simulation results are given to demonstrate the effectiveness of the proposed control protocol.
基金support provided by Opening Foundation of Key Laboratory of Opto-technology and Intelligent Control(Lanzhou Jiaotong University),Ministry of Education(KFKT2020-11).
文摘Droop control is one of the main control strategies of islanded microgrid(MG),but the droop control cannot achieve reasonable power distribution of microgrid,resulting in frequency and voltage deviation from the rating value,which needs the upper control link to eliminate the deviation.However,at present,most layered control requires a centralized control center,which excessively relies on microgrid central controller(MGCC)and real-time communication among distributed generation(DG),which has certain limitations.To solve the above problems,this paper proposes a hierarchical distributed power and power quality optimization strategy based on multi-agent finite time consistency algorithm(MA-FTCA).Firstly,based on the first layer droop control,MA-FTCA is applied to introduce frequency and voltage compensation to stabilize the system frequency and voltage at the rated value.Secondly,in the third layer,the MA-FTCA is adopted to estimate the total active power and total reactive power spare capacity of the system,to realize the reasonable distribution of active power and reactive power output of each DG according to its proportion of spare capacity when the system load side changes.The control strategy proposed in this paper adopts a completely distributed control method and does not need a centralized control center in each layer of control.Finally,MATLAB/Simulink simulation platform is used to verify the correctness and effectiveness of the proposed optimization strategy.
文摘The large scale and complex manufacturing systems have a hierarchical structure where a system is composed several lines with some stations and each station also have several machines and so on. In such a hierarchical structure, the controllers are geographically distributed according to their physical structure. So it is desirable to realize the hierarchical and distributed control. In this paper, a methodology is presented using Petri nets for hierarchical and distributed control. The Petri net representation of discrete event manufacturing processes is decomposed and distributed into the machine controllers, which are coordinated through communication between the coordinator and machine controllers so that the decomposed transitions fire at the same time. Implementation of a hierarchical and distributed control system is described for an example robotic manufacturing system. The demonstrations show that the proposed system can be used as an effective tool for consistent modeling and control of large and complex manufacturing systems.
文摘作为一种适应高比例分布式新能源接入的新型配电网架构,蜂巢状有源配电网利用多端口能量枢纽(multi-port energy hub,MEH)可实现多微电网/配网单元间功率的互联互济,如MEH中包含储能设备,可以进一步提升新能源利用率和电网可靠性。文中提出一种含储能的MEH及其分层协调控制策略。上层控制根据储能系统的荷电状态和配电网运行状态协调控制储能变流器与各并网端口变流器之间的功率分配,使得MEH在平抑新能源波动、配网故障恢复等运行模式下均能够对内部储能系统进行能量管理。下层控制通过将储能变流器有功功率的微分值反馈至储能系统控制环路进行补偿,提高储能变流器输入/输出有功功率响应速度。文中设计了MEH控制系统关键参数,利用MATLAB/Simulink对MEH在配电系统中的应用进行仿真。不同工况下的仿真对比验证了所提分层协调控制策略的有效性,证明该策略能够延长储能系统工作时间,提高储能系统有功功率变化率,减小直流母线的电压波动。