An integratable distributed Bragg reflector laser is fabricated by low energy ion implantation induced quantum well intermixing.A 4 6nm quasi continuous wavelength tuning range is achieved by controlling phase curr...An integratable distributed Bragg reflector laser is fabricated by low energy ion implantation induced quantum well intermixing.A 4 6nm quasi continuous wavelength tuning range is achieved by controlling phase current and grating current simultaneously,and side mode suppression ratio maintains over 30dB throughout the tuning range except a few mode jump points.展开更多
The wet oxidation of AlGaAs with high Al content in a distributed Bragg reflectors (DBR) is studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Some voids distribute along t...The wet oxidation of AlGaAs with high Al content in a distributed Bragg reflectors (DBR) is studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Some voids distribute along the oxide/GaAs interfaces due to the stress induced by the wet oxidation of the AlGaAs layers. These voids decrease the shrinkage of the Al2O3 layers to 8% instead of the theoretical 20% when compared to the unoxidized AlGaAs layers. With the extension of oxidation time, the reactants are more completely transported to the front interface and the products are more completely transported out along the porous interfaces. As a result,the oxide quality is better.展开更多
We report a monolithic integrated dual-wavelength laser diode based on a distributed Bragg reflector (DBR) composite resonant cavity. The device consists of three sections, a DBR grating section, a passive phase sec...We report a monolithic integrated dual-wavelength laser diode based on a distributed Bragg reflector (DBR) composite resonant cavity. The device consists of three sections, a DBR grating section, a passive phase section, and an active gain section. The gain section facet is cleaved to work as a laser cavity mirror. The other laser mirror is the DBR grating, which also functions as a wavelength filter and can control the number of wavelengths involved in the laser action. The reflection bandwidth of the DBR grating is fabricated to have an appropriate value to make the device work at the dual-wavelength lasing state. We adopt the quantum well intermixing (QWI) technique to provide low-absorption loss grating and passive phase section in the fabrication process. By tuning the injection currents on the DBR and the gain sections, the device can generate 0.596 nm-spaced dual-wavelength lasing at room temperature.展开更多
A 1040 nm tapered laser with tapered distributed Bragg reflector(DBR) grating is designed and fabricated. By designing the grating with tapered layout, the tapered DBR grating exhibits the scattering effect on side ba...A 1040 nm tapered laser with tapered distributed Bragg reflector(DBR) grating is designed and fabricated. By designing the grating with tapered layout, the tapered DBR grating exhibits the scattering effect on side backward-traveling waves, thus achieving additional suppression of parasitic oscillation. Under the suppression of parasitic oscillation, the spatial and spectral characteristics of the tapered laser are improved. The experimental results show that a near-Gaussian far-field distribution and a kink-free P–I characteristics are achieved, and a single peak emission with a wavelength of1046.84 nm and a linewidth of 56 pm is obtained.展开更多
The resistance characteristics of a continuously-graded distributed Bragg reflector(DBR) in a 980-nm verticalcavity surface-emitting laser(VCSEL) are modeled in detail.The junction resistances between the layers o...The resistance characteristics of a continuously-graded distributed Bragg reflector(DBR) in a 980-nm verticalcavity surface-emitting laser(VCSEL) are modeled in detail.The junction resistances between the layers of both the p-and n-DBR mirrors are analysed by combining the thermionic emission model and the finite difference method.In the meantime,the intrinsic resistance of the DBR material system is calculated to make a comparison with the junction resistance.The minimal values of series resistances of the graded p-and n-type DBR mirrors and the lateral temperature-dependent resistance variation are calculated and discussed.The result indicates the potential to optimize the design of the DBR reflectors of the 980-nm VCSELs.展开更多
Spectral and structural characteristics of distributed Bragg reflector (DBR) in vertical-cavity surface-emitting lasers were studied with photoluminescence and double-crystal X-ray diffraction measurement.The expected...Spectral and structural characteristics of distributed Bragg reflector (DBR) in vertical-cavity surface-emitting lasers were studied with photoluminescence and double-crystal X-ray diffraction measurement.The expected high quality epitaxial DBR structure was verified.In the X-ray double-crystal rocking curves of DBR the zeroth-order peak,the first and second order satellite peaks were measured.Splitting of diffraction peak appeared in the rocking curves was analyzed.The effects of introduced deep energy levels on the structural perfection and optical properties were discussed.展开更多
A new design for an all optical flip flop is introduced. It is based on a nonlinear Distributed Bragg Reflector (DBR) semiconductor laser structure. The device does not require a holding beam. An optical gain medium c...A new design for an all optical flip flop is introduced. It is based on a nonlinear Distributed Bragg Reflector (DBR) semiconductor laser structure. The device does not require a holding beam. An optical gain medium confined between 2 Bragg reflectors forms the device. One of the Bragg reflectors is detuned from the other by making its average refractive index slightly higher, and it has a negative nonlinear coefficient that is due to direct absorption at Urbach tail. At low light intensity in the structure, the detuned Bragg reflector does not provide optical feedback to start a laser mode. An optical pulse injected to the structure reduces the detuning of the nonlinear Bragg reflector and a laser mode builds up. The device is reset by detuning the second Bragg reflector optically by an optical pulse that generates electron-hole pairs by direct absorption. A mathematical model of the device is introduced. The model is solved numerically in time domain using a general purpose graphics processing unit (GPGPU) to increase accuracy and to reduce the computation time. The switching dynamics of the device are in nanosecond time scale. The device could be used for all optical data packet switching/routing.展开更多
A Q-switched distributed Bragg reflector fiber laser using a graphene passive saturable absorber is proposed in a cavity consisting of a fiber Bragg grating and Faraday rotator mirror as end mirrors, together with a h...A Q-switched distributed Bragg reflector fiber laser using a graphene passive saturable absorber is proposed in a cavity consisting of a fiber Bragg grating and Faraday rotator mirror as end mirrors, together with a highly doped erbium-doped fiber as a gain source. The laser has a Q-switched threshold of about 28 mW and a tunable repetition rate of 10.4-18.0 kHz with varying pump power. The shortest pulse width obtained from the system is 3.7 its, with a maximum pulse energy and peak power of 22.2 nJ and 3.4 mW, respectively.展开更多
We report holographic fabrication of nanoporous distributed Bragg reflector(DBR) films with periodic nanoscale porosity via a single-prism conuration. The nanoporous DBR films result from the phase separation in a mat...We report holographic fabrication of nanoporous distributed Bragg reflector(DBR) films with periodic nanoscale porosity via a single-prism conuration. The nanoporous DBR films result from the phase separation in a material recipe, which consists of a polymerizable acrylate monomer and nonreactive volatile solvent. By changing the interfering angle of two laser beams, we achieve the nanoporous DBR films with highly reflective red,green, and blue colors. The reflection band of the nanoporous DBR films can be tuned by further filling different liquids into the pores inside the films, resulting in the color change accordingly. Experimental results show that such kinds of nanoporous DBR films could be potentially useful for many applications, such as color filters and refractive index sensors.展开更多
A frequency and wavelength tunable self-pulsation laser based on DBR laser devices is reported for the first time.This laser generates continuous tunable optical microwave in the range of 1.87-21.81 GHz with 3-dB line...A frequency and wavelength tunable self-pulsation laser based on DBR laser devices is reported for the first time.This laser generates continuous tunable optical microwave in the range of 1.87-21.81 GHz with 3-dB linewidth about 10 MHz by tuning the injection currents on the front and back gain sections,and exhibits wavelength tuning range from 1536.28 to 1538.73 nm by tuning the injection currents on the grating section.展开更多
We report a 1.8 μm two-section distributed Bragg reflector laser using butt-jointed InGaAsP bulk material as the waveguide core layer. The threshold current is 17 mA and the output power is 8 mW on average. The thres...We report a 1.8 μm two-section distributed Bragg reflector laser using butt-jointed InGaAsP bulk material as the waveguide core layer. The threshold current is 17 mA and the output power is 8 mW on average. The threshold current, output power, and emitting wavelength dependences on temperature are measured. The obtained wave- length tuning range is 10 nm. This device has potential applications in simultaneous multiple-gas detection.展开更多
The two-section tunable ridge waveguide distributed Bragg reflector (DBR) lasers fabricated by strained In xGa1-xAsyP1-y The threshold current of the laser is 51mA. The tunable range of the laser is 3.2nm and the side...The two-section tunable ridge waveguide distributed Bragg reflector (DBR) lasers fabricated by strained In xGa1-xAsyP1-y The threshold current of the laser is 51mA. The tunable range of the laser is 3.2nm and the side mode suppression ratio (SMSR) is more than 38dB.展开更多
The metal-organic chemical vapor deposition(MOCVD) growth of AlGaN/GaN distributed Bragg reflectors (DBR) with a reflection peak at 530 nm was in situ monitored using 633 nm laser reflectometry.Evolutions of in si...The metal-organic chemical vapor deposition(MOCVD) growth of AlGaN/GaN distributed Bragg reflectors (DBR) with a reflection peak at 530 nm was in situ monitored using 633 nm laser reflectometry.Evolutions of in situ reflected reflectivity for different kinds of AlGaN/GaN DBR were simulated by the classical transfer matrix method.Two DBR samples,which have the same parameters as the simulated structures,were grown by MOCVD.The simulated and experimental results show that it is possible to evaluate the DBR parameters from the envelope shape of the in situ reflectivity spectrum.With the help of the 633 nm laser reflectometry,a DBR light emitting diode(LED) was grown.The room temperature photoluminescence spectra show that the reflection peak of the DBR in the LED is within the design region.展开更多
We report an index-coupled distributed feedback quantum cascade laser by employing an equivalent phase shift(EPS) of quarter-wave integrated with a distributed Bragg reflector(DBR) at λ~5.03 μm. The EPS is fabricate...We report an index-coupled distributed feedback quantum cascade laser by employing an equivalent phase shift(EPS) of quarter-wave integrated with a distributed Bragg reflector(DBR) at λ~5.03 μm. The EPS is fabricated through extending one sampling period by 50% in the center of a sampled Bragg grating. The key EPS and DBR pattern are fabricated by conventional holographic exposure combined with the optical photolithography technology, which leads to improved flexibility, repeatability, and cost-effectiveness. Stable single-mode emission can be obtained by changing the injection current or heat sink temperature even under the condition of large driving pulse width.展开更多
The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM)....The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.展开更多
A terahertz excitation source based on a dual-lateral-mode distributed Bragg reflector (DBR) laser working in the 1.5 μm range is experimentally demonstrated. By optimizing the width of the ridge waveguide, the fun...A terahertz excitation source based on a dual-lateral-mode distributed Bragg reflector (DBR) laser working in the 1.5 μm range is experimentally demonstrated. By optimizing the width of the ridge waveguide, the fundamental and the first-order lateral modes are obtained from the laser. The mode spacing between the two modes is 9.68 nm, corresponding to a beat signal of 1.21 THz. By tuning the bias currents of the phase and DBR sections, the wavelengths of the two modes can be tuned by 2 nm, with a small strength difference (〈5 dB) and a large side-mode suppression ratio (SMSR 〉 45 dB).展开更多
A micromachined vertical cavity tunable filter with AlGaAs/GaAs distributed Bragg reflector is presented.This filter can be electrostatic tuning over a range of 28nm with an applied voltage of 7V.
The linewidths of InGaAs-GaAs-AlGaAs DBR lasers with varied DBR dimensional parameters are measured and analyzed. These lasers were built with different DBR grating lengths and depths in order to explore the effect of...The linewidths of InGaAs-GaAs-AlGaAs DBR lasers with varied DBR dimensional parameters are measured and analyzed. These lasers were built with different DBR grating lengths and depths in order to explore the effect of the size of the DBR on its coupling coefficient and reflectivity,and hence on the linewidth of the laser diodes. The linewidths were measured by employing a self heterodyne linewidth measurement system. The experimental and calculated data for DBR reflectivity and spectral linewidth are given. The relationship between these data and the dimensions of the DBR is analyzed. Based on this analysis,the effect of the DBR geometry on the linewidth of the lasers is explored. The results give useful information related to the design and fabrication of such DBR lasers.展开更多
The 3-section SG-DBR tunable laser is fabricate d using an ion implantation quantum-well intermixing process.The over 30nm discontinuous tuning range is achieved with the SMRS greater than 30dB.
We report a wavelength tunable electro-absorption modulated DBR laser based on a combined method of SAG and QWI. The threshold current is 37mA and the output power at 100mA gain current is 3.5mW. When coupled to a sin...We report a wavelength tunable electro-absorption modulated DBR laser based on a combined method of SAG and QWI. The threshold current is 37mA and the output power at 100mA gain current is 3.5mW. When coupled to a single-mode fiber with a coupling efficiency of 15% ,more than a 20dB extinction ratio is observed over the change of EAM bias from 0 to -2V. The 4.4nm continuous wavelength tuning range covers 6 channels on a 100GHz grid for WDM telecommunications.展开更多
文摘An integratable distributed Bragg reflector laser is fabricated by low energy ion implantation induced quantum well intermixing.A 4 6nm quasi continuous wavelength tuning range is achieved by controlling phase current and grating current simultaneously,and side mode suppression ratio maintains over 30dB throughout the tuning range except a few mode jump points.
文摘The wet oxidation of AlGaAs with high Al content in a distributed Bragg reflectors (DBR) is studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Some voids distribute along the oxide/GaAs interfaces due to the stress induced by the wet oxidation of the AlGaAs layers. These voids decrease the shrinkage of the Al2O3 layers to 8% instead of the theoretical 20% when compared to the unoxidized AlGaAs layers. With the extension of oxidation time, the reactants are more completely transported to the front interface and the products are more completely transported out along the porous interfaces. As a result,the oxide quality is better.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60736036 and 61021003)the National Basic Research Program of China (Grant No. 2011CB301702)
文摘We report a monolithic integrated dual-wavelength laser diode based on a distributed Bragg reflector (DBR) composite resonant cavity. The device consists of three sections, a DBR grating section, a passive phase section, and an active gain section. The gain section facet is cleaved to work as a laser cavity mirror. The other laser mirror is the DBR grating, which also functions as a wavelength filter and can control the number of wavelengths involved in the laser action. The reflection bandwidth of the DBR grating is fabricated to have an appropriate value to make the device work at the dual-wavelength lasing state. We adopt the quantum well intermixing (QWI) technique to provide low-absorption loss grating and passive phase section in the fabrication process. By tuning the injection currents on the DBR and the gain sections, the device can generate 0.596 nm-spaced dual-wavelength lasing at room temperature.
基金Project supported by Jilin Science and Technology Development Plan,China(Grant Nos.20210201030GX and 20190302052GX)。
文摘A 1040 nm tapered laser with tapered distributed Bragg reflector(DBR) grating is designed and fabricated. By designing the grating with tapered layout, the tapered DBR grating exhibits the scattering effect on side backward-traveling waves, thus achieving additional suppression of parasitic oscillation. Under the suppression of parasitic oscillation, the spatial and spectral characteristics of the tapered laser are improved. The experimental results show that a near-Gaussian far-field distribution and a kink-free P–I characteristics are achieved, and a single peak emission with a wavelength of1046.84 nm and a linewidth of 56 pm is obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974012)
文摘The resistance characteristics of a continuously-graded distributed Bragg reflector(DBR) in a 980-nm verticalcavity surface-emitting laser(VCSEL) are modeled in detail.The junction resistances between the layers of both the p-and n-DBR mirrors are analysed by combining the thermionic emission model and the finite difference method.In the meantime,the intrinsic resistance of the DBR material system is calculated to make a comparison with the junction resistance.The minimal values of series resistances of the graded p-and n-type DBR mirrors and the lateral temperature-dependent resistance variation are calculated and discussed.The result indicates the potential to optimize the design of the DBR reflectors of the 980-nm VCSELs.
文摘Spectral and structural characteristics of distributed Bragg reflector (DBR) in vertical-cavity surface-emitting lasers were studied with photoluminescence and double-crystal X-ray diffraction measurement.The expected high quality epitaxial DBR structure was verified.In the X-ray double-crystal rocking curves of DBR the zeroth-order peak,the first and second order satellite peaks were measured.Splitting of diffraction peak appeared in the rocking curves was analyzed.The effects of introduced deep energy levels on the structural perfection and optical properties were discussed.
文摘A new design for an all optical flip flop is introduced. It is based on a nonlinear Distributed Bragg Reflector (DBR) semiconductor laser structure. The device does not require a holding beam. An optical gain medium confined between 2 Bragg reflectors forms the device. One of the Bragg reflectors is detuned from the other by making its average refractive index slightly higher, and it has a negative nonlinear coefficient that is due to direct absorption at Urbach tail. At low light intensity in the structure, the detuned Bragg reflector does not provide optical feedback to start a laser mode. An optical pulse injected to the structure reduces the detuning of the nonlinear Bragg reflector and a laser mode builds up. The device is reset by detuning the second Bragg reflector optically by an optical pulse that generates electron-hole pairs by direct absorption. A mathematical model of the device is introduced. The model is solved numerically in time domain using a general purpose graphics processing unit (GPGPU) to increase accuracy and to reduce the computation time. The switching dynamics of the device are in nanosecond time scale. The device could be used for all optical data packet switching/routing.
基金supported by the Ministry of Higher Education/University of Malaya(Nos.UM.C/HIR/MOHE/SC/01 and UPGP2012)
文摘A Q-switched distributed Bragg reflector fiber laser using a graphene passive saturable absorber is proposed in a cavity consisting of a fiber Bragg grating and Faraday rotator mirror as end mirrors, together with a highly doped erbium-doped fiber as a gain source. The laser has a Q-switched threshold of about 28 mW and a tunable repetition rate of 10.4-18.0 kHz with varying pump power. The shortest pulse width obtained from the system is 3.7 its, with a maximum pulse energy and peak power of 22.2 nJ and 3.4 mW, respectively.
基金supported in part by the National Natural Science Foundation of China (No. 61805113)Natural Science Foundation of Guangdong Province(Nos. 2017A030313034 and 2018A030310224)+4 种基金Shenzhen Science and Technology Innovation Commission (Nos.JCYJ20180305180635082JCYJ20170817111349280GJHZ20180928155207206)Open Fund of State Key Laboratory of Applied Optics (No. SKLAO-201904)Guangdong Innovative and Entrepreneurial Research Team Program (No. 2017ZT07C071)。
文摘We report holographic fabrication of nanoporous distributed Bragg reflector(DBR) films with periodic nanoscale porosity via a single-prism conuration. The nanoporous DBR films result from the phase separation in a material recipe, which consists of a polymerizable acrylate monomer and nonreactive volatile solvent. By changing the interfering angle of two laser beams, we achieve the nanoporous DBR films with highly reflective red,green, and blue colors. The reflection band of the nanoporous DBR films can be tuned by further filling different liquids into the pores inside the films, resulting in the color change accordingly. Experimental results show that such kinds of nanoporous DBR films could be potentially useful for many applications, such as color filters and refractive index sensors.
基金Project supported by the National High Technology Research and Development Program of China(Nos.2006AA01Z256, 2007AA03Z419,2007AA03Z417)the State Key Development Program for Basic Research of China(Nos.2006CB604901, 2006CB604902)the National Natural Science Foundation of China(Nos.90401025,60736036,60706009,60777021).
文摘A frequency and wavelength tunable self-pulsation laser based on DBR laser devices is reported for the first time.This laser generates continuous tunable optical microwave in the range of 1.87-21.81 GHz with 3-dB linewidth about 10 MHz by tuning the injection currents on the front and back gain sections,and exhibits wavelength tuning range from 1536.28 to 1538.73 nm by tuning the injection currents on the grating section.
基金supported by the National"863"Project of China under Grant No.2012AA012203
文摘We report a 1.8 μm two-section distributed Bragg reflector laser using butt-jointed InGaAsP bulk material as the waveguide core layer. The threshold current is 17 mA and the output power is 8 mW on average. The threshold current, output power, and emitting wavelength dependences on temperature are measured. The obtained wave- length tuning range is 10 nm. This device has potential applications in simultaneous multiple-gas detection.
文摘The two-section tunable ridge waveguide distributed Bragg reflector (DBR) lasers fabricated by strained In xGa1-xAsyP1-y The threshold current of the laser is 51mA. The tunable range of the laser is 3.2nm and the side mode suppression ratio (SMSR) is more than 38dB.
基金supported by the National Natural Science Foundation of China(No.60777019)
文摘The metal-organic chemical vapor deposition(MOCVD) growth of AlGaN/GaN distributed Bragg reflectors (DBR) with a reflection peak at 530 nm was in situ monitored using 633 nm laser reflectometry.Evolutions of in situ reflected reflectivity for different kinds of AlGaN/GaN DBR were simulated by the classical transfer matrix method.Two DBR samples,which have the same parameters as the simulated structures,were grown by MOCVD.The simulated and experimental results show that it is possible to evaluate the DBR parameters from the envelope shape of the in situ reflectivity spectrum.With the help of the 633 nm laser reflectometry,a DBR light emitting diode(LED) was grown.The room temperature photoluminescence spectra show that the reflection peak of the DBR in the LED is within the design region.
基金National Basic Research Program of China(2013CB632800)National Key Research and Development Program(2016YFB0402303)+2 种基金National Natural Science Foundation of China(NSFC)(61404131,61435014,61674144,61574136,61627822)Chinese Academy of Sciences Key Project(CAS Key Project)(QYZDJ-SSWJSC027,ZDRW-XH-2016-4)Natural Science Foundation of Beijing Municipality(4162060,4172060)
文摘We report an index-coupled distributed feedback quantum cascade laser by employing an equivalent phase shift(EPS) of quarter-wave integrated with a distributed Bragg reflector(DBR) at λ~5.03 μm. The EPS is fabricated through extending one sampling period by 50% in the center of a sampled Bragg grating. The key EPS and DBR pattern are fabricated by conventional holographic exposure combined with the optical photolithography technology, which leads to improved flexibility, repeatability, and cost-effectiveness. Stable single-mode emission can be obtained by changing the injection current or heat sink temperature even under the condition of large driving pulse width.
基金supported by the National Key R&D Program of China,No.2022YFB4601201.
文摘The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.
基金supported by the National Natural Science Foundation of China (No. 61335009, 61274045, 61271066, 61321063)the National 973 Project of China (No. 2011CB301702)the National 863 Project of China (No. 2013AA014202)
文摘A terahertz excitation source based on a dual-lateral-mode distributed Bragg reflector (DBR) laser working in the 1.5 μm range is experimentally demonstrated. By optimizing the width of the ridge waveguide, the fundamental and the first-order lateral modes are obtained from the laser. The mode spacing between the two modes is 9.68 nm, corresponding to a beat signal of 1.21 THz. By tuning the bias currents of the phase and DBR sections, the wavelengths of the two modes can be tuned by 2 nm, with a small strength difference (〈5 dB) and a large side-mode suppression ratio (SMSR 〉 45 dB).
文摘A micromachined vertical cavity tunable filter with AlGaAs/GaAs distributed Bragg reflector is presented.This filter can be electrostatic tuning over a range of 28nm with an applied voltage of 7V.
文摘The linewidths of InGaAs-GaAs-AlGaAs DBR lasers with varied DBR dimensional parameters are measured and analyzed. These lasers were built with different DBR grating lengths and depths in order to explore the effect of the size of the DBR on its coupling coefficient and reflectivity,and hence on the linewidth of the laser diodes. The linewidths were measured by employing a self heterodyne linewidth measurement system. The experimental and calculated data for DBR reflectivity and spectral linewidth are given. The relationship between these data and the dimensions of the DBR is analyzed. Based on this analysis,the effect of the DBR geometry on the linewidth of the lasers is explored. The results give useful information related to the design and fabrication of such DBR lasers.
文摘The 3-section SG-DBR tunable laser is fabricate d using an ion implantation quantum-well intermixing process.The over 30nm discontinuous tuning range is achieved with the SMRS greater than 30dB.
文摘We report a wavelength tunable electro-absorption modulated DBR laser based on a combined method of SAG and QWI. The threshold current is 37mA and the output power at 100mA gain current is 3.5mW. When coupled to a single-mode fiber with a coupling efficiency of 15% ,more than a 20dB extinction ratio is observed over the change of EAM bias from 0 to -2V. The 4.4nm continuous wavelength tuning range covers 6 channels on a 100GHz grid for WDM telecommunications.