From the perspective of transactive energy, the energy trading among interconnected microgrids(MGs) is promising to improve the economy and reliability of system operations. In this paper, a distributed energy managem...From the perspective of transactive energy, the energy trading among interconnected microgrids(MGs) is promising to improve the economy and reliability of system operations. In this paper, a distributed energy management method for interconnected operations of combined heat and power(CHP)-based MGs with demand response(DR) is proposed. First, the system model of operational cost including CHP, DR, renewable distributed sources, and diesel generation is introduced, where the DR is modeled as a virtual generation unit. Second, the optimal scheduling model is decentralized as several distributed scheduling models in accordance with the number of associated MGs. Moreover, a distributed iterative algorithm based on subgradient with dynamic search direction is proposed. During the iterative process, the information exchange between neighboring MGs is limited to Lagrange multipliers and expected purchasing energy. Finally,numerical results are given for an interconnected MGs system consisting of three MGs, and the effectiveness of the proposed method is verified.展开更多
This paper proposes a distributed real-time state estimation(RTSE)method for the combined heat and power systems(CHPSs).First,a difference-based model for the heat system is established considering the dynamics of hea...This paper proposes a distributed real-time state estimation(RTSE)method for the combined heat and power systems(CHPSs).First,a difference-based model for the heat system is established considering the dynamics of heat systems.This heat system model is further used along with the power system steady-state model for holistic CHPS state estimation.A cubature Kalman filter(CKF)-based RTSE is developed to deal with the system nonlinearity while integrating both the historical and present measurement information.Finally,a multi-timescale asynchronous distributed computation scheme is designed to enhance the scalability of the proposed method for largescale systems.This distributed implementation requires only a small amount of information exchange and thus protects the privacy of different energy systems.Simulations carried out on two CHPSs show that the proposed method can significantly improve the estimation efficiency of CHPS without loss of accuracy compared with other existing models and methods.展开更多
为优化能源配置和用能效率,采用虚拟电厂模式聚合热电联产(Combined Heat and Power,CHP)机组等分布式能源作为整体参与市场交易,考虑CHP机组热电比可调运行模式突破传统以热定电的限制,实现CHP机组的热电解耦,提升机组调度的灵活性。...为优化能源配置和用能效率,采用虚拟电厂模式聚合热电联产(Combined Heat and Power,CHP)机组等分布式能源作为整体参与市场交易,考虑CHP机组热电比可调运行模式突破传统以热定电的限制,实现CHP机组的热电解耦,提升机组调度的灵活性。此外针对虚拟电厂面临的风电不确定性,采用鲁棒优化进行处理,构建min-maxmin两阶段鲁棒优化模型,寻找不确定变量在不确定集合内朝着最恶劣场景变化时经济性最优的交易方案,并通过列约束生成算法对主子问题进行交替迭代求解。算例结果表明,采用CHP热电比可调运行模式并合理考虑风电出力不确定性能够提升系统调峰能力、降低出力偏差,对促进清洁能源消纳具有积极作用;也验证了通过虚拟电厂实现热电联合优化调度,作为整体参与市场运行具有较强的经济性优势。展开更多
热电联产虚拟电厂(combined heat and power virtual power plant,CHP-VPP)聚合了各类电热出力单元,可兼顾风光出力不确定性、动态电价、用户热舒适度等影响,实现整体出力的优化调度。提出了两阶段分布鲁棒优化调度方法,第一阶段考虑计...热电联产虚拟电厂(combined heat and power virtual power plant,CHP-VPP)聚合了各类电热出力单元,可兼顾风光出力不确定性、动态电价、用户热舒适度等影响,实现整体出力的优化调度。提出了两阶段分布鲁棒优化调度方法,第一阶段考虑计划调度,旨在保证CHP-VPP的收益最大;第二阶段基于矩不确定分布鲁棒方法,构建风光出力的不确定性模糊集,引入用户热舒适度HOMIE模型,降低电热净负荷波动幅度,实现对CHP-VPP内部各单元实时出力的优化调整。针对IEEE14节点模型进行算例研究,分析了不确定参数、不同优化方法以及动态电价对调度结果的影响,结果表明:所提出的两阶段调度方法能够有效进行电热调度,实现系统的收益最大化和波动最小化。展开更多
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2014AA052001)the Fundamental Research Funds for the Central Universities(No.2015ZD02)
文摘From the perspective of transactive energy, the energy trading among interconnected microgrids(MGs) is promising to improve the economy and reliability of system operations. In this paper, a distributed energy management method for interconnected operations of combined heat and power(CHP)-based MGs with demand response(DR) is proposed. First, the system model of operational cost including CHP, DR, renewable distributed sources, and diesel generation is introduced, where the DR is modeled as a virtual generation unit. Second, the optimal scheduling model is decentralized as several distributed scheduling models in accordance with the number of associated MGs. Moreover, a distributed iterative algorithm based on subgradient with dynamic search direction is proposed. During the iterative process, the information exchange between neighboring MGs is limited to Lagrange multipliers and expected purchasing energy. Finally,numerical results are given for an interconnected MGs system consisting of three MGs, and the effectiveness of the proposed method is verified.
基金supported by the Science and Technology Project of State Grid Corporation of China(No.52060019001H)。
文摘This paper proposes a distributed real-time state estimation(RTSE)method for the combined heat and power systems(CHPSs).First,a difference-based model for the heat system is established considering the dynamics of heat systems.This heat system model is further used along with the power system steady-state model for holistic CHPS state estimation.A cubature Kalman filter(CKF)-based RTSE is developed to deal with the system nonlinearity while integrating both the historical and present measurement information.Finally,a multi-timescale asynchronous distributed computation scheme is designed to enhance the scalability of the proposed method for largescale systems.This distributed implementation requires only a small amount of information exchange and thus protects the privacy of different energy systems.Simulations carried out on two CHPSs show that the proposed method can significantly improve the estimation efficiency of CHPS without loss of accuracy compared with other existing models and methods.
文摘为优化能源配置和用能效率,采用虚拟电厂模式聚合热电联产(Combined Heat and Power,CHP)机组等分布式能源作为整体参与市场交易,考虑CHP机组热电比可调运行模式突破传统以热定电的限制,实现CHP机组的热电解耦,提升机组调度的灵活性。此外针对虚拟电厂面临的风电不确定性,采用鲁棒优化进行处理,构建min-maxmin两阶段鲁棒优化模型,寻找不确定变量在不确定集合内朝着最恶劣场景变化时经济性最优的交易方案,并通过列约束生成算法对主子问题进行交替迭代求解。算例结果表明,采用CHP热电比可调运行模式并合理考虑风电出力不确定性能够提升系统调峰能力、降低出力偏差,对促进清洁能源消纳具有积极作用;也验证了通过虚拟电厂实现热电联合优化调度,作为整体参与市场运行具有较强的经济性优势。
文摘热电联产虚拟电厂(combined heat and power virtual power plant,CHP-VPP)聚合了各类电热出力单元,可兼顾风光出力不确定性、动态电价、用户热舒适度等影响,实现整体出力的优化调度。提出了两阶段分布鲁棒优化调度方法,第一阶段考虑计划调度,旨在保证CHP-VPP的收益最大;第二阶段基于矩不确定分布鲁棒方法,构建风光出力的不确定性模糊集,引入用户热舒适度HOMIE模型,降低电热净负荷波动幅度,实现对CHP-VPP内部各单元实时出力的优化调整。针对IEEE14节点模型进行算例研究,分析了不确定参数、不同优化方法以及动态电价对调度结果的影响,结果表明:所提出的两阶段调度方法能够有效进行电热调度,实现系统的收益最大化和波动最小化。