Referring to the shortages that the process of traditional greenhouse measurement by using thermometer and hygrometer is complex,the measurement result is not accurate,and the control system operation is cumbersome,a ...Referring to the shortages that the process of traditional greenhouse measurement by using thermometer and hygrometer is complex,the measurement result is not accurate,and the control system operation is cumbersome,a greenhouse temperature and humidity(TH)control system based on CC3200 is designed.The system uses FPGA as the main controller,sends the TH signals to the wireless module CC3200 by controlling DHT22.The proposed system realizes the remote transmission of data and the automatic control of system.展开更多
A temperature control system of 31m vertical forced air-circulation quench furnace is proposed, which is a kind of equipment critical for thermal treatment of aluminum alloy components that are widely used in aerospac...A temperature control system of 31m vertical forced air-circulation quench furnace is proposed, which is a kind of equipment critical for thermal treatment of aluminum alloy components that are widely used in aerospace industry. For the effective operation of the furnace, it is essential to analyze the radial temperature distribution of the furnace. A set of thermodynamic balance equations modeling is established firsdy. By utilizing the numerical analysis result to modify the temperature measurements, the control accuracy and precision of the temperature are truly guaranteed. Furthermore, the multivariable decoupling self-learning PID control algorithm based on the characteristics of strong coupling between the multi-zones in the large-scaled furnace is implemented to ensure the true homogeneity of the axial temperature distribution. Finally, the redundant structure composed of industrial control computers and touch panels leads to great improvement of system reliability.展开更多
This paper deals with the application of decouple Control theory to temperature and humidi-ty control in air-conditioning system. The decouple control algorithm for bivariable systems isderived applicablly for air-con...This paper deals with the application of decouple Control theory to temperature and humidi-ty control in air-conditioning system. The decouple control algorithm for bivariable systems isderived applicablly for air-conditioning system. The algorithm is used to design a temperatureand humidity computer control system for the preprocessing chamber of air-conditioning testequipment. The results of the real-time control experiments indicate that the decouple controlalgorithm is feasible, the control quality is improved and high control precision is achieved.展开更多
The effect of external roof shading on the spatial distribution of air temperature and relative humidity in a greenhouse(Tin and RHin) was evaluated under the arid climatic conditions of Riyadh City, Saudi Arabia. Two...The effect of external roof shading on the spatial distribution of air temperature and relative humidity in a greenhouse(Tin and RHin) was evaluated under the arid climatic conditions of Riyadh City, Saudi Arabia. Two identical, evaporatively-cooled, single-span greenhouses were used in the experiment. One greenhouse was externally shaded(Gs) using a movable black plastic net(30% transmissivity), and the other greenhouse was kept without shading(Gc). Strawberry plants were cultivated in both greenhouses. The results showed that the spatial distribution of the Tin and RHin was significantly affected by the outside solar radiation and evaporative cooling operation. The regression analysis showed that when the outside solar radiation intensity increased from 200 to 800 W m–2, the Tin increased by 4.5℃ in the Gc and 2℃in the Gs, while the RHin decreased by 15% in the Gc and 5% in the Gs, respectively. Compared with those in the Gc, more uniformity in the spatial distribution of the Tin and RHin was observed in the Gs. The difference between the maximum and minimum Tin of 6.4℃ and the RHin of 10% was lower in the Gs than those in the Gc during the early morning. Around 2℃ difference in the Tin was shown between the area closed to the exhausted fans and the area closed to the cooling pad with the external shading. In an evaporatively-cooled greenhouse in arid regions, the variation of the Tin and RHin in the vertical direction and along the sidewalls was much higher than that in the horizontal direction. The average variation of the Tin and RHin in the vertical direction was 5.2℃ and 10% in the Gc and 5.5℃ and 13% in the Gs, respectively. The external shading improved the spatial distribution of the Tin and RHin and improved the cooling efficiency of the evaporative cooling system by 12%, since the transmitted solar radiation and accumulated thermal energy in the greenhouse were significantly reduced.展开更多
The vertical migration of Aphelenchoides besseyi under different temperatures and humidities and at different rice growth stages was investigated. It was found that the optimum temperature for the development and repr...The vertical migration of Aphelenchoides besseyi under different temperatures and humidities and at different rice growth stages was investigated. It was found that the optimum temperature for the development and reproduction of A. besseyiwas 25-30℃. At the same temperature, the rate of vertical migration increased with rising relative humidity. Artificial inoculation tests showed that at the elongation stage, nematodes survived mainly on the upper and middle parts of rice culms and the number of nematodes decreased by 50% at 20 days after inoculation compared with that at 5 days after inoculation. Whereas at the booting stage, nematodes accumulated in young panicles and reproduced quickly,, and the average number of nematodes at 20 days after inoculation increased to 164.5, three times of that at 5 days after inoculation.展开更多
As the depth of exploitation increases,studies on constitutive models of rock affected by temperature and humidity become very important.Based on the Nishihara model,a visco-elastic-plastic rock model was established ...As the depth of exploitation increases,studies on constitutive models of rock affected by temperature and humidity become very important.Based on the Nishihara model,a visco-elastic-plastic rock model was established by using the coefficients of thermal and humidity expansion,thermal viscosity attenuation,humid viscosity attenuation and acceleration rheology components.We used the definition of a controlled heat circle to explain the model.The results show that the behavior of rock,affected by temperature and humidity,is stable as a function of time when the stress is lower than the first yield stress σS1;the creep rate will increase due to the effect of temperature and humidity when the stress is greater than or equal to σS1;the creep rate will accelerate at an increasing rate when the stress is greater than or equal to the second yield stress σS2,which results in a failure of the roadway.The model derived in this study can completely describe visco-elastic-plastic characteristics and reflects the three stages of rock creep.展开更多
In this paper, we present a new algorithm to solve a two-dimensional parabolic inverse problem with a source parameter, which appears in many physical phenomena. A linearized compact difference scheme for this problem...In this paper, we present a new algorithm to solve a two-dimensional parabolic inverse problem with a source parameter, which appears in many physical phenomena. A linearized compact difference scheme for this problem is constructed using the finite difference method. The discretization accuracy is second-order in time and fourth-order in space. We obtain the unique solvability and present an alternating direction implicit algorithm to solve this difference scheme. The results of numerical experiments are presented to demonstrate the accuracy of this algorithm.展开更多
Cooling panels are increasingly used in domestic residential buildings.To provide medium temperature cold water for the cooling panel,and dehumidify the indoor air simultaneously,a new kind of temperature-humidity ind...Cooling panels are increasingly used in domestic residential buildings.To provide medium temperature cold water for the cooling panel,and dehumidify the indoor air simultaneously,a new kind of temperature-humidity independent control air-conditioning unit was developed for single residential house by utilizing multi-variable technology.First,the supply air temperature was studied to determine the proper supply air flow rate for the humidity control.Then,the energy consumption of different temperature-humidity independent control systems was studied.The analysis indicates that unity evaporating temperature can be used to handle the moisture load and sensible heat load in two evaporators.So the unit scheme was put forward.Two evaporators were used to produce medium temperature water and dry air separately,and electric expansion valves were used to control the refrigerant distribution between the two evaporators.Then,experimental work was carried out to investigate the influence of compressor frequency,refrigerant distribution on the dehumidification capacity,energy efficiency and refrigeration capacity.In the end,the paper concludes that both compressor frequency and refrigerant distribution can control the dehumidification capacity,but the former influences the EER more than the latter,while the latter influences the refrigeration capacity more than the former.We can find a proper running point at certain sensible and latent cooling load by adjusting both compressor frequency and electric expansion valve.The energy consumption of this kind of unit was estimated and compared with present room air conditioners,which shows that it can save about 41% cooling energy consumption.展开更多
A distribution map of osier weevil (Crytorrynchus lapathi L.) was drown up based on widely collecting information and field survey. The results showed that Osier weevil has a widespread in China, stretching from 33...A distribution map of osier weevil (Crytorrynchus lapathi L.) was drown up based on widely collecting information and field survey. The results showed that Osier weevil has a widespread in China, stretching from 33°21' to 51°42' N latitude and 83°00' to 132°58' E longitude, and distributes in forms of big or small patches or sports uncontinously. According to the analysis of meteorological data, the temperature and humidity threshold for osier weevil's distribution were determined by methods of PCA (Principle Component Analysis) and RA(Relativity Analysis): January temperature is -30~ 0℃. Annual temperature -4~13℃, Annual precipitation from 411~ 1,136 min.The areas with January temperature under 0℃, annual temperature above 0℃ and annual precipitation of 400~ 800 mm are the optimum distributing places for osier weevil in China.展开更多
[ Objective] The research aimed to study differences of temperature and humidity and vertical distribution of human comfort between city and countryside of Heilongjiang in summer. [Method] By using temperature, humidi...[ Objective] The research aimed to study differences of temperature and humidity and vertical distribution of human comfort between city and countryside of Heilongjiang in summer. [Method] By using temperature, humidity and wind velocity data at 10 and 70 m of two iron towers in urban and rural districts of Heilongjiang from June 1 to August 31,2010, the characteristics at temperature and humidity fields and change rule of human comfort index in urban and rural areas in summer were analyzed. [Result] Compared with rural areas, heat island effect of urban districts was obvious, and it was the strongest during 21:00 -23:00 and the weakest during 05:00 -06:00. Daily change rules of wind velocity at 10 m of two anemometer towers were basically consistent. Wind velocity was big at daytime and small at night. Daily change of wind velocity at 70 m of urban districts was consistent with that at 10 m, while wind velocity change at 70 m of rural areas was different from that at 10 m, which had obvious high-altitude wind characteristics. Daily change rules of humidity in two towers were basically consistent, and occurrence time of extremum at 70 m delayed for 1 h. At vertical height, humidity at 10 m was higher than that at 70 m at daytime, and was lower than that at 70 m at night. [ Conclusion] The city had obvious wet island effect during 00:00 -06:00 and dry island effect at nightfall. Comfort index of urban districts was higher than that in rural areas, and difference was the maximum during 19:00 -21:00. Comfort index at 10 m was higher than that at 70 m at daytime in the city and countryside, and was lower than that at 70 m at night. Occurrence frequencies of Grade Zero of comfort at 10 and 70 m of urban districts were both over 60%, while occurrence frequency of ≥ Grade Three of comfort was very small. At vertical height, human comfort had small difference at night. At daytime, as height rise, human comfort index significantly declined, and human feeling was more comfortable than that at low layer.展开更多
Water consumption can be reduced by using a greenhouse for agriculture in desert areas. We analyzed the effect of control of ventilation, sprinkler water, and solar radiation?shielding on changes of temperature and hu...Water consumption can be reduced by using a greenhouse for agriculture in desert areas. We analyzed the effect of control of ventilation, sprinkler water, and solar radiation?shielding on changes of temperature and humidity in a greenhouse under various desert area conditions. We calculated the changes in temperature and humidity in a greenhouse for a whole day in four seasons, and the calculation results of water consumption with and without a greenhouse were compared. When ventilation, shielding, and sprinkler water were controlled under suitable conditions to grow orchids in a desert area, water consumption in July was only 7% of that without a greenhouse.展开更多
20 localities were randomly selected in Eastern Black Sea Region of Turkey and samples were collected from around the beehives from April to September. Total of 4,640 dead adult worker bees were examined during the st...20 localities were randomly selected in Eastern Black Sea Region of Turkey and samples were collected from around the beehives from April to September. Total of 4,640 dead adult worker bees were examined during the study. Total infection rate in worker bees was 21.23%. Nosema ceranae was identified in all localities with molecular techniques. Temperature and humidity values were measured from around the beehives during field studies. The infection rate ofN. ceranae increased proportionally with increasing temperature and humidity factors. Humidity was more effective than temperature on the infection rate ofN. ceranae. The seasonal activity ofN. ceranae was studied. The highest infection rates were observed in June and July. N. ceranae infection rate was higher in localities that were in low-altitude than in localities that were in high-altitude.展开更多
Temperature and humidity independent control(THIC)air-conditioning system is a promising technology.In this work,a novel temperature and humidity independent control(THIC)system is proposed,namely VMD-ACERS,which inte...Temperature and humidity independent control(THIC)air-conditioning system is a promising technology.In this work,a novel temperature and humidity independent control(THIC)system is proposed,namely VMD-ACERS,which integrates vacuum membrane-based dehumidification and air carrying energy radiant air-conditioning system.This work establishes a novel coefficient of performance(COP)model of VMD-ACERS.The main parameters affecting the COP of conventional fan coil unit cooling system(FCUCS)and VMD-ACERS are investigated.The performance of FCUCS and VMD-ACERS are compared,and the energy-saving potential of VMD-ACERS is proved.Results indicate that,for FCUCS,the importance ranking of parameters is basically stable.However,for VMD-ACERS,the importance ranking will be affected by FCU and refrigerant.The most important parameters of VMD-ACERS are condensation temperature and permeate side pressure.On the contrary,superheating,subcooling are relatively less important parameters.For VMD-ACERS,it is not necessary to pursue the membrane with very high selectivity,because the selectivity of membrane would also be a less important parameter when it reaches 500.The COP of VMD-ACERS is higher than that of FCUCS when the permeate side pressure is higher than 8 k Pa.The VMD-ACERS solves two technical problems about power-saving and thermal comfort of conventional THIC,and can extend the application of THIC air-conditioning system.展开更多
Polymer Electrolyte Fuel Cell(PEFC)is desired to be operated at temperature around 90℃ for stationary applications during the period from 2020 to 2025 in Japan.It can be expected thinner polymer electrolyte membrane(...Polymer Electrolyte Fuel Cell(PEFC)is desired to be operated at temperature around 90℃ for stationary applications during the period from 2020 to 2025 in Japan.It can be expected thinner polymer electrolyte membrane(PEM)and gas diffusion layer(GDL)would promote the power generation performance of PEFC at this temperature.The aim of this study is to understand the impact of thickness of PEM and GDL on the temperature profile of interface between PEM and catalyst layer at the cathode(i.e.,the reaction surface)in a single PEFC with an initial operation temperature(Tini).An 1D multi-plate heat transfer model based on temperature data of separator measured using thermograph in power generation process was developed to evaluate temperature of the reaction surface(Treact).This study investigated the effect of Tini,flow rate and relative humidity of supply gas on Treact distribution.The study finds that when using thin GDL,the even distribution of Treact – Tini is obtained irrespective of thickness of PEM,Tini and relative humidity conditions.Treact – Tini using Nafion 115 is higher than the other thin PEMs irrespective of Tini and relative humidity conditions.It can be concluded that the even temperature distribution could be achieved by using thin PEM and GDL.展开更多
For improving the performance of stationary PEFC (polymer electrolyte fuel cell) system, the cell operating temperature up to 90℃ will be preferred in Japan during the period from 2020 to 2030. To understand the op...For improving the performance of stationary PEFC (polymer electrolyte fuel cell) system, the cell operating temperature up to 90℃ will be preferred in Japan during the period from 2020 to 2030. To understand the operation of the PEFC system under relatively high temperature conditions, detail heat and mass transfer analysis is required. The purpose of this study is to analyze the impact of relative humidity of supply gas on temperature distribution on the backside of separator in single ceil of PEFC using Nation membrane at higher temperature e.g. 90℃. The in-plane temperature distribution when power was being generated was measured using thermograph with various relative humidity of supply gases. It was found that the in-plane temperature distribution at the anode was more even than that at the cathode irrespective of the relative humidity of supply gas at the anode and the cathode. The temperature elevated along gas flow through the gas channel at the cathode irrespective of relative humidity of supply gas at the anode and the cathode. The in-plane temperature distribution at the cathode was narrower with the increase in Tini irrespective of relative humidity of supply gas at the cathode, while it was not observed when changing the relative humidity of supply gas at the anode. When the relative humidity of supply gas at cathode decreased, the in-plane temperature distribution at the anode was wider compared to decreasing the relative humidity of supply gas at the anode. The study concluded that the impact of relative humidity of supply gas at both anode and cathode had little impact on the in-plane temperature distribution at the cathode.展开更多
The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibil...The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibility with traditional system and the characteristics of distributed optical fiber temperature sensor is considered before Modbus TCP/IP protocol is chosen. The protocol is implemented with open source component Indy. The Modbus TCP/IP protocol used in the system is proved to be fast and robust.展开更多
Variable air volume(VAV)air-conditioning(AC)systems are widely employed to achieve a comfortable room thermal and humid environment depending on its better regulation performance and energy efficiency.In the single co...Variable air volume(VAV)air-conditioning(AC)systems are widely employed to achieve a comfortable room thermal and humid environment depending on its better regulation performance and energy efficiency.In the single coil VAV AC system,conventional proportional-integral(PI)control algorithm is usually adopted to track the set-points of the room temperature and humidity by regulating the supply air flow rate and the chilled water flow rate,respectively.However,the control performance is usually not good due to the high coupling of the heat and mass transfer in the air-handling unit(AHU).A model-based control method is developed to realize the decoupling control of the room temperature and humidity according to the bilinear characteristics of the temperature and humidity variation.In this control method,a bilinear room temperature controller is used to track the room temperature set-point based on the real-time cooling load,while a room humidity controller is used to track the room humidity set-point depending on the real-time humidity load.The control performance was validated in a simulated VAV AC system.The test results show that comparing with the conventional PI control,the room temperature and humidity are controlled much more robustly and accurately by using the proposed model-based control method.展开更多
The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pc-fired furnace with multi-burner system. The development of the visualization of 3-...The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pc-fired furnace with multi-burner system. The development of the visualization of 3-D temperature distributions in pc-fired furnaces makes it possible for a new combustion control strategy directly with the furnace temperature as its goal to improve the control quality for the combustion processes. Studied in this paper is such a new strategy that the whole furnace is divided into several parts in the vertical direction, and the average temperature and its bias from the center in every cross section can be extracted from the visualization results of the 3-D temperature distributions. In the simulation stage, a computational fluid dynamics(CFD) code served to calculate the 3-D temperature distributions in a furnace, then a linear model was set up to relate the features of the temperature distributions with the input of the combustion processes, such as the flow rates of fuel and air fed into the furnaces through all the burners. The adaptive genetic algorithm was adopted to find the optimal combination of the whole input parameters which ensure to form an optimal 3-D temperature field in the furnace desired for the operation of boiler. Simulation results showed that the strategy could soon find the factors making the temperature distribution apart from the optimal state and give correct adjusting suggestions.展开更多
Microwave drying is one of the most important drying methods in agriculture.The online measurement and control of material dried,as a challenging research issue,is helping to improve the drying quality of the final pr...Microwave drying is one of the most important drying methods in agriculture.The online measurement and control of material dried,as a challenging research issue,is helping to improve the drying quality of the final product and the energy utilization efficiency of microwave dryers.In order to realize the online measurement of temperature in microwave drying,a detection strategy was based on the temperature and humidity monitoring at the air outlet of coupling hot air and microwave drying method.LabVIEW programming software was employed to collect the temperature and humidity signal value at the outlet of the dryer to estimate the drying degree of the material.According to the amount of moisture removal in real-time,the microwave input power was adjusted gradually in the microwave drying process.Taking potato as material dried,the microwave power of microwave and hot air coupling drying is monitored to realize the real-time regulation.The results showed that the total color difference value of the product of 3.09,the rehydration ratio of 2.92,the unit energy consumption of 17419.35 kJ/kg,and the drying rate of 0.442 g/s were obtained.The minimum comprehensive weighted score of the product was 26.36.Compared with the orthogonal experiment,the optimal drying process was obtained as the total color difference value of the product of 2.84,the rehydration ratio of 3.01,the unit energy consumption of 17419.35 kJ/kg,and the drying rate of 0.397 g/s.The minimum comprehensive weighted score of the product was 20.67,and the difference was not significant.The control strategy not only solves the non-uniform phenomenon of drying,and makes the microwave drying real-time and continuous,but also improves the drying efficiency and quality.展开更多
Polymer Electrolyte Fuel Cell(PEFC)is required to be operated at temperature at 100℃ for fuel cell vehicle applications during the period from 2020 to 2025 in Japan.It is expected that micro porous layer(MPL)and thin...Polymer Electrolyte Fuel Cell(PEFC)is required to be operated at temperature at 100℃ for fuel cell vehicle applications during the period from 2020 to 2025 in Japan.It is expected that micro porous layer(MPL)and thinner polymer electrolyte membrane(PEM)would enhance the power generation performance of PEFC at this temperature.The key objective of this study is to analyse the impact of MPL and thickness of PEM on the temperature distributions of interface between the PEM and catalyst layer at the cathode(i.e.,the reaction surface)in a single PEFC.A 1D multi-plate heat transfer model,considering vapor transfer,which is based on temperature data of separator measured using thermograph in power generation process.It is developed to evaluate temperature at the reaction surface.This study is investigated the effect of flow rate and relative humidity of supply gases on temperature distribution on reaction surface.The study reveals that the impact of flow rate of supply gas on temperature distribution on reaction surface is smaller with and without MPL.It is observed that the even temperature distribution on reaction surface as well as higher power generation performance can be obtained with MPL irrespective of thickness of PEM and relative humidity conditions.展开更多
文摘Referring to the shortages that the process of traditional greenhouse measurement by using thermometer and hygrometer is complex,the measurement result is not accurate,and the control system operation is cumbersome,a greenhouse temperature and humidity(TH)control system based on CC3200 is designed.The system uses FPGA as the main controller,sends the TH signals to the wireless module CC3200 by controlling DHT22.The proposed system realizes the remote transmission of data and the automatic control of system.
基金It was supported by the National Natural Science Foundation of China (No. 59835170).
文摘A temperature control system of 31m vertical forced air-circulation quench furnace is proposed, which is a kind of equipment critical for thermal treatment of aluminum alloy components that are widely used in aerospace industry. For the effective operation of the furnace, it is essential to analyze the radial temperature distribution of the furnace. A set of thermodynamic balance equations modeling is established firsdy. By utilizing the numerical analysis result to modify the temperature measurements, the control accuracy and precision of the temperature are truly guaranteed. Furthermore, the multivariable decoupling self-learning PID control algorithm based on the characteristics of strong coupling between the multi-zones in the large-scaled furnace is implemented to ensure the true homogeneity of the axial temperature distribution. Finally, the redundant structure composed of industrial control computers and touch panels leads to great improvement of system reliability.
文摘This paper deals with the application of decouple Control theory to temperature and humidi-ty control in air-conditioning system. The decouple control algorithm for bivariable systems isderived applicablly for air-conditioning system. The algorithm is used to design a temperatureand humidity computer control system for the preprocessing chamber of air-conditioning testequipment. The results of the real-time control experiments indicate that the decouple controlalgorithm is feasible, the control quality is improved and high control precision is achieved.
文摘The effect of external roof shading on the spatial distribution of air temperature and relative humidity in a greenhouse(Tin and RHin) was evaluated under the arid climatic conditions of Riyadh City, Saudi Arabia. Two identical, evaporatively-cooled, single-span greenhouses were used in the experiment. One greenhouse was externally shaded(Gs) using a movable black plastic net(30% transmissivity), and the other greenhouse was kept without shading(Gc). Strawberry plants were cultivated in both greenhouses. The results showed that the spatial distribution of the Tin and RHin was significantly affected by the outside solar radiation and evaporative cooling operation. The regression analysis showed that when the outside solar radiation intensity increased from 200 to 800 W m–2, the Tin increased by 4.5℃ in the Gc and 2℃in the Gs, while the RHin decreased by 15% in the Gc and 5% in the Gs, respectively. Compared with those in the Gc, more uniformity in the spatial distribution of the Tin and RHin was observed in the Gs. The difference between the maximum and minimum Tin of 6.4℃ and the RHin of 10% was lower in the Gs than those in the Gc during the early morning. Around 2℃ difference in the Tin was shown between the area closed to the exhausted fans and the area closed to the cooling pad with the external shading. In an evaporatively-cooled greenhouse in arid regions, the variation of the Tin and RHin in the vertical direction and along the sidewalls was much higher than that in the horizontal direction. The average variation of the Tin and RHin in the vertical direction was 5.2℃ and 10% in the Gc and 5.5℃ and 13% in the Gs, respectively. The external shading improved the spatial distribution of the Tin and RHin and improved the cooling efficiency of the evaporative cooling system by 12%, since the transmitted solar radiation and accumulated thermal energy in the greenhouse were significantly reduced.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2001AA249021)
文摘The vertical migration of Aphelenchoides besseyi under different temperatures and humidities and at different rice growth stages was investigated. It was found that the optimum temperature for the development and reproduction of A. besseyiwas 25-30℃. At the same temperature, the rate of vertical migration increased with rising relative humidity. Artificial inoculation tests showed that at the elongation stage, nematodes survived mainly on the upper and middle parts of rice culms and the number of nematodes decreased by 50% at 20 days after inoculation compared with that at 5 days after inoculation. Whereas at the booting stage, nematodes accumulated in young panicles and reproduced quickly,, and the average number of nematodes at 20 days after inoculation increased to 164.5, three times of that at 5 days after inoculation.
基金provided by the National Basic Research Program of China (No.2010CB226804)
文摘As the depth of exploitation increases,studies on constitutive models of rock affected by temperature and humidity become very important.Based on the Nishihara model,a visco-elastic-plastic rock model was established by using the coefficients of thermal and humidity expansion,thermal viscosity attenuation,humid viscosity attenuation and acceleration rheology components.We used the definition of a controlled heat circle to explain the model.The results show that the behavior of rock,affected by temperature and humidity,is stable as a function of time when the stress is lower than the first yield stress σS1;the creep rate will increase due to the effect of temperature and humidity when the stress is greater than or equal to σS1;the creep rate will accelerate at an increasing rate when the stress is greater than or equal to the second yield stress σS2,which results in a failure of the roadway.The model derived in this study can completely describe visco-elastic-plastic characteristics and reflects the three stages of rock creep.
基金supported by the Natural Science Foundation of Shandong Province of China (Grant No. ZR2009AL012)the Scienceand Technology Program of Education Bureau of Shandong Province, China (Grant No. J09LA12)
文摘In this paper, we present a new algorithm to solve a two-dimensional parabolic inverse problem with a source parameter, which appears in many physical phenomena. A linearized compact difference scheme for this problem is constructed using the finite difference method. The discretization accuracy is second-order in time and fourth-order in space. We obtain the unique solvability and present an alternating direction implicit algorithm to solve this difference scheme. The results of numerical experiments are presented to demonstrate the accuracy of this algorithm.
基金Supported by Research Fund of the 11th 5year Sci Tech National Support Project
文摘Cooling panels are increasingly used in domestic residential buildings.To provide medium temperature cold water for the cooling panel,and dehumidify the indoor air simultaneously,a new kind of temperature-humidity independent control air-conditioning unit was developed for single residential house by utilizing multi-variable technology.First,the supply air temperature was studied to determine the proper supply air flow rate for the humidity control.Then,the energy consumption of different temperature-humidity independent control systems was studied.The analysis indicates that unity evaporating temperature can be used to handle the moisture load and sensible heat load in two evaporators.So the unit scheme was put forward.Two evaporators were used to produce medium temperature water and dry air separately,and electric expansion valves were used to control the refrigerant distribution between the two evaporators.Then,experimental work was carried out to investigate the influence of compressor frequency,refrigerant distribution on the dehumidification capacity,energy efficiency and refrigeration capacity.In the end,the paper concludes that both compressor frequency and refrigerant distribution can control the dehumidification capacity,but the former influences the EER more than the latter,while the latter influences the refrigeration capacity more than the former.We can find a proper running point at certain sensible and latent cooling load by adjusting both compressor frequency and electric expansion valve.The energy consumption of this kind of unit was estimated and compared with present room air conditioners,which shows that it can save about 41% cooling energy consumption.
文摘A distribution map of osier weevil (Crytorrynchus lapathi L.) was drown up based on widely collecting information and field survey. The results showed that Osier weevil has a widespread in China, stretching from 33°21' to 51°42' N latitude and 83°00' to 132°58' E longitude, and distributes in forms of big or small patches or sports uncontinously. According to the analysis of meteorological data, the temperature and humidity threshold for osier weevil's distribution were determined by methods of PCA (Principle Component Analysis) and RA(Relativity Analysis): January temperature is -30~ 0℃. Annual temperature -4~13℃, Annual precipitation from 411~ 1,136 min.The areas with January temperature under 0℃, annual temperature above 0℃ and annual precipitation of 400~ 800 mm are the optimum distributing places for osier weevil in China.
文摘[ Objective] The research aimed to study differences of temperature and humidity and vertical distribution of human comfort between city and countryside of Heilongjiang in summer. [Method] By using temperature, humidity and wind velocity data at 10 and 70 m of two iron towers in urban and rural districts of Heilongjiang from June 1 to August 31,2010, the characteristics at temperature and humidity fields and change rule of human comfort index in urban and rural areas in summer were analyzed. [Result] Compared with rural areas, heat island effect of urban districts was obvious, and it was the strongest during 21:00 -23:00 and the weakest during 05:00 -06:00. Daily change rules of wind velocity at 10 m of two anemometer towers were basically consistent. Wind velocity was big at daytime and small at night. Daily change of wind velocity at 70 m of urban districts was consistent with that at 10 m, while wind velocity change at 70 m of rural areas was different from that at 10 m, which had obvious high-altitude wind characteristics. Daily change rules of humidity in two towers were basically consistent, and occurrence time of extremum at 70 m delayed for 1 h. At vertical height, humidity at 10 m was higher than that at 70 m at daytime, and was lower than that at 70 m at night. [ Conclusion] The city had obvious wet island effect during 00:00 -06:00 and dry island effect at nightfall. Comfort index of urban districts was higher than that in rural areas, and difference was the maximum during 19:00 -21:00. Comfort index at 10 m was higher than that at 70 m at daytime in the city and countryside, and was lower than that at 70 m at night. Occurrence frequencies of Grade Zero of comfort at 10 and 70 m of urban districts were both over 60%, while occurrence frequency of ≥ Grade Three of comfort was very small. At vertical height, human comfort had small difference at night. At daytime, as height rise, human comfort index significantly declined, and human feeling was more comfortable than that at low layer.
文摘Water consumption can be reduced by using a greenhouse for agriculture in desert areas. We analyzed the effect of control of ventilation, sprinkler water, and solar radiation?shielding on changes of temperature and humidity in a greenhouse under various desert area conditions. We calculated the changes in temperature and humidity in a greenhouse for a whole day in four seasons, and the calculation results of water consumption with and without a greenhouse were compared. When ventilation, shielding, and sprinkler water were controlled under suitable conditions to grow orchids in a desert area, water consumption in July was only 7% of that without a greenhouse.
文摘20 localities were randomly selected in Eastern Black Sea Region of Turkey and samples were collected from around the beehives from April to September. Total of 4,640 dead adult worker bees were examined during the study. Total infection rate in worker bees was 21.23%. Nosema ceranae was identified in all localities with molecular techniques. Temperature and humidity values were measured from around the beehives during field studies. The infection rate ofN. ceranae increased proportionally with increasing temperature and humidity factors. Humidity was more effective than temperature on the infection rate ofN. ceranae. The seasonal activity ofN. ceranae was studied. The highest infection rates were observed in June and July. N. ceranae infection rate was higher in localities that were in low-altitude than in localities that were in high-altitude.
基金The National Key Technology Support Program(2015BAJ03B01)the Hunan Provincial Innovation Foundation for Postgraduate Studies(CX20190287)。
文摘Temperature and humidity independent control(THIC)air-conditioning system is a promising technology.In this work,a novel temperature and humidity independent control(THIC)system is proposed,namely VMD-ACERS,which integrates vacuum membrane-based dehumidification and air carrying energy radiant air-conditioning system.This work establishes a novel coefficient of performance(COP)model of VMD-ACERS.The main parameters affecting the COP of conventional fan coil unit cooling system(FCUCS)and VMD-ACERS are investigated.The performance of FCUCS and VMD-ACERS are compared,and the energy-saving potential of VMD-ACERS is proved.Results indicate that,for FCUCS,the importance ranking of parameters is basically stable.However,for VMD-ACERS,the importance ranking will be affected by FCU and refrigerant.The most important parameters of VMD-ACERS are condensation temperature and permeate side pressure.On the contrary,superheating,subcooling are relatively less important parameters.For VMD-ACERS,it is not necessary to pursue the membrane with very high selectivity,because the selectivity of membrane would also be a less important parameter when it reaches 500.The COP of VMD-ACERS is higher than that of FCUCS when the permeate side pressure is higher than 8 k Pa.The VMD-ACERS solves two technical problems about power-saving and thermal comfort of conventional THIC,and can extend the application of THIC air-conditioning system.
文摘Polymer Electrolyte Fuel Cell(PEFC)is desired to be operated at temperature around 90℃ for stationary applications during the period from 2020 to 2025 in Japan.It can be expected thinner polymer electrolyte membrane(PEM)and gas diffusion layer(GDL)would promote the power generation performance of PEFC at this temperature.The aim of this study is to understand the impact of thickness of PEM and GDL on the temperature profile of interface between PEM and catalyst layer at the cathode(i.e.,the reaction surface)in a single PEFC with an initial operation temperature(Tini).An 1D multi-plate heat transfer model based on temperature data of separator measured using thermograph in power generation process was developed to evaluate temperature of the reaction surface(Treact).This study investigated the effect of Tini,flow rate and relative humidity of supply gas on Treact distribution.The study finds that when using thin GDL,the even distribution of Treact – Tini is obtained irrespective of thickness of PEM,Tini and relative humidity conditions.Treact – Tini using Nafion 115 is higher than the other thin PEMs irrespective of Tini and relative humidity conditions.It can be concluded that the even temperature distribution could be achieved by using thin PEM and GDL.
文摘For improving the performance of stationary PEFC (polymer electrolyte fuel cell) system, the cell operating temperature up to 90℃ will be preferred in Japan during the period from 2020 to 2030. To understand the operation of the PEFC system under relatively high temperature conditions, detail heat and mass transfer analysis is required. The purpose of this study is to analyze the impact of relative humidity of supply gas on temperature distribution on the backside of separator in single ceil of PEFC using Nation membrane at higher temperature e.g. 90℃. The in-plane temperature distribution when power was being generated was measured using thermograph with various relative humidity of supply gases. It was found that the in-plane temperature distribution at the anode was more even than that at the cathode irrespective of the relative humidity of supply gas at the anode and the cathode. The temperature elevated along gas flow through the gas channel at the cathode irrespective of relative humidity of supply gas at the anode and the cathode. The in-plane temperature distribution at the cathode was narrower with the increase in Tini irrespective of relative humidity of supply gas at the cathode, while it was not observed when changing the relative humidity of supply gas at the anode. When the relative humidity of supply gas at cathode decreased, the in-plane temperature distribution at the anode was wider compared to decreasing the relative humidity of supply gas at the anode. The study concluded that the impact of relative humidity of supply gas at both anode and cathode had little impact on the in-plane temperature distribution at the cathode.
基金supported by the National Natural Science Foundation of China under Grant No. 60608009Science Foundation of Zhejiang Province under Grant No. Y107091 and ScienceTechnology Department of Zhejiang Province under Grant No. 2008C21172.
文摘The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibility with traditional system and the characteristics of distributed optical fiber temperature sensor is considered before Modbus TCP/IP protocol is chosen. The protocol is implemented with open source component Indy. The Modbus TCP/IP protocol used in the system is proved to be fast and robust.
基金This work presented in this paper is financially supported by a grant(No.51678263)of National Science Foundation of China.
文摘Variable air volume(VAV)air-conditioning(AC)systems are widely employed to achieve a comfortable room thermal and humid environment depending on its better regulation performance and energy efficiency.In the single coil VAV AC system,conventional proportional-integral(PI)control algorithm is usually adopted to track the set-points of the room temperature and humidity by regulating the supply air flow rate and the chilled water flow rate,respectively.However,the control performance is usually not good due to the high coupling of the heat and mass transfer in the air-handling unit(AHU).A model-based control method is developed to realize the decoupling control of the room temperature and humidity according to the bilinear characteristics of the temperature and humidity variation.In this control method,a bilinear room temperature controller is used to track the room temperature set-point based on the real-time cooling load,while a room humidity controller is used to track the room humidity set-point depending on the real-time humidity load.The control performance was validated in a simulated VAV AC system.The test results show that comparing with the conventional PI control,the room temperature and humidity are controlled much more robustly and accurately by using the proposed model-based control method.
文摘The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pc-fired furnace with multi-burner system. The development of the visualization of 3-D temperature distributions in pc-fired furnaces makes it possible for a new combustion control strategy directly with the furnace temperature as its goal to improve the control quality for the combustion processes. Studied in this paper is such a new strategy that the whole furnace is divided into several parts in the vertical direction, and the average temperature and its bias from the center in every cross section can be extracted from the visualization results of the 3-D temperature distributions. In the simulation stage, a computational fluid dynamics(CFD) code served to calculate the 3-D temperature distributions in a furnace, then a linear model was set up to relate the features of the temperature distributions with the input of the combustion processes, such as the flow rates of fuel and air fed into the furnaces through all the burners. The adaptive genetic algorithm was adopted to find the optimal combination of the whole input parameters which ensure to form an optimal 3-D temperature field in the furnace desired for the operation of boiler. Simulation results showed that the strategy could soon find the factors making the temperature distribution apart from the optimal state and give correct adjusting suggestions.
基金This study was financially supported by the Major Science and Technology Special Fund of Science and Technology Department of Yunnan Province(Grant No.2018ZF004)Analysis and Test Fund of Kunming University of Science and Technology(Grant No.2019T20030031).
文摘Microwave drying is one of the most important drying methods in agriculture.The online measurement and control of material dried,as a challenging research issue,is helping to improve the drying quality of the final product and the energy utilization efficiency of microwave dryers.In order to realize the online measurement of temperature in microwave drying,a detection strategy was based on the temperature and humidity monitoring at the air outlet of coupling hot air and microwave drying method.LabVIEW programming software was employed to collect the temperature and humidity signal value at the outlet of the dryer to estimate the drying degree of the material.According to the amount of moisture removal in real-time,the microwave input power was adjusted gradually in the microwave drying process.Taking potato as material dried,the microwave power of microwave and hot air coupling drying is monitored to realize the real-time regulation.The results showed that the total color difference value of the product of 3.09,the rehydration ratio of 2.92,the unit energy consumption of 17419.35 kJ/kg,and the drying rate of 0.442 g/s were obtained.The minimum comprehensive weighted score of the product was 26.36.Compared with the orthogonal experiment,the optimal drying process was obtained as the total color difference value of the product of 2.84,the rehydration ratio of 3.01,the unit energy consumption of 17419.35 kJ/kg,and the drying rate of 0.397 g/s.The minimum comprehensive weighted score of the product was 20.67,and the difference was not significant.The control strategy not only solves the non-uniform phenomenon of drying,and makes the microwave drying real-time and continuous,but also improves the drying efficiency and quality.
文摘Polymer Electrolyte Fuel Cell(PEFC)is required to be operated at temperature at 100℃ for fuel cell vehicle applications during the period from 2020 to 2025 in Japan.It is expected that micro porous layer(MPL)and thinner polymer electrolyte membrane(PEM)would enhance the power generation performance of PEFC at this temperature.The key objective of this study is to analyse the impact of MPL and thickness of PEM on the temperature distributions of interface between the PEM and catalyst layer at the cathode(i.e.,the reaction surface)in a single PEFC.A 1D multi-plate heat transfer model,considering vapor transfer,which is based on temperature data of separator measured using thermograph in power generation process.It is developed to evaluate temperature at the reaction surface.This study is investigated the effect of flow rate and relative humidity of supply gases on temperature distribution on reaction surface.The study reveals that the impact of flow rate of supply gas on temperature distribution on reaction surface is smaller with and without MPL.It is observed that the even temperature distribution on reaction surface as well as higher power generation performance can be obtained with MPL irrespective of thickness of PEM and relative humidity conditions.