The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communicati...The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.展开更多
Over time, the world has transformed digitally and there is total dependence on the internet. Many more gadgets are continuously interconnected in the internet ecosystem. This fact has made the Internet a global infor...Over time, the world has transformed digitally and there is total dependence on the internet. Many more gadgets are continuously interconnected in the internet ecosystem. This fact has made the Internet a global information source for every being. Despite all this, attacker knowledge by cybercriminals has advanced and resulted in different attack methodologies on the internet and its data stores. This paper will discuss the origin and significance of Denial of Service (DoS) and Distributed Denial of Service (DDoS). These kinds of attacks remain the most effective methods used by the bad guys to cause substantial damage in terms of operational, reputational, and financial damage to organizations globally. These kinds of attacks have hindered network performance and availability. The victim’s network is flooded with massive illegal traffic hence, denying genuine traffic from passing through for authorized users. The paper will explore detection mechanisms, and mitigation techniques for this network threat.展开更多
The distributed denial of service (DDoS) attack is one of the dangers in intrusion modes. It's difficult to defense and can cause serious damage to the system. Based on a careful study of the attack principles and...The distributed denial of service (DDoS) attack is one of the dangers in intrusion modes. It's difficult to defense and can cause serious damage to the system. Based on a careful study of the attack principles and characteristics, an object-oriented formalized description is presented, which contains a three-level framework and offers full specifications of all kinds of DDoS modes and their features and the relations between one another. Its greatest merit lies in that it contributes to analyzing, checking and judging DDoS. Now this formalized description has been used in a special IDS and it works very effectively.(展开更多
Electric power grids are evolving into complex cyber-physical power systems(CPPSs)that integrate advanced information and communication technologies(ICTs)but face increasing cyberspace threats and attacks.This study c...Electric power grids are evolving into complex cyber-physical power systems(CPPSs)that integrate advanced information and communication technologies(ICTs)but face increasing cyberspace threats and attacks.This study considers CPPS cyberspace security under distributed denial of service(DDoS)attacks and proposes a nonzero-sum game-theoretical model with incomplete information for appropriate allocation of defense resources based on the availability of limited resources.Task time delay is applied to quantify the expected utility as CPPSs have high time requirements and incur massive damage DDoS attacks.Different resource allocation strategies are adopted by attackers and defenders under the three cases of attack-free,failed attack,and successful attack,which lead to a corresponding consumption of resources.A multidimensional node value analysis is designed to introduce physical and cybersecurity indices.Simulation experiments and numerical results demonstrate the effectiveness of the proposed model for the appropriate allocation of defense resources in CPPSs under limited resource availability.展开更多
The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are ...The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.展开更多
In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term ...In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term consequences that businesses encounter. This study integrates findings from various research, including quantitative reports, drawing upon real-world incidents faced by both small and large enterprises. This investigation emphasizes the profound intangible costs, such as trade name devaluation and potential damage to brand reputation, which can persist long after the breach. By collating insights from industry experts and a myriad of research, the study provides a comprehensive perspective on the profound, multi-dimensional impacts of cybersecurity incidents. The overarching aim is to underscore the often-underestimated scope and depth of these breaches, emphasizing the entire timeline post-incident and the urgent need for fortified preventative and reactive measures in the digital domain.展开更多
ARP-based Distributed Denial of Service (DDoS) attacks due to ARP-storms can happen in local area networks where many computer systems are infected by worms such as Code Red or by DDoS agents. In ARP attack, the DDoS ...ARP-based Distributed Denial of Service (DDoS) attacks due to ARP-storms can happen in local area networks where many computer systems are infected by worms such as Code Red or by DDoS agents. In ARP attack, the DDoS agents constantly send a barrage of ARP requests to the gateway, or to a victim computer within the same sub-network, and tie up the resource of attacked gateway or host. In this paper, we set to measure the impact of ARP-attack on resource exhaustion of computers in a local area network. Based on attack experiments, we measure the exhaustion of processing and memory resources of a victim computer and also other computers, which are located on the same network as the victim computer. Interestingly enough, it is observed that an ARP-attack not only exhausts resource of the victim computer but also significantly exhausts processing resource of other non-victim computers, which happen to be located on the same local area network as the victim computer.展开更多
The recent development of cloud computing offers various services on demand for organization and individual users,such as storage,shared computing space,networking,etc.Although Cloud Computing provides various advanta...The recent development of cloud computing offers various services on demand for organization and individual users,such as storage,shared computing space,networking,etc.Although Cloud Computing provides various advantages for users,it remains vulnerable to many types of attacks that attract cyber criminals.Distributed Denial of Service(DDoS)is the most common type of attack on cloud computing.Consequently,Cloud computing professionals and security experts have focused on the growth of preventive processes towards DDoS attacks.Since DDoS attacks have become increasingly widespread,it becomes difficult for some DDoS attack methods based on individual network flow features to distinguish various types of DDoS attacks.Further,the monitoring pattern of traffic changes and accurate detection of DDoS attacks are most important and urgent.In this research work,DDoS attack detection methods based on deep belief network feature extraction and Hybrid Long Short-Term Memory(LSTM)model have been proposed with NSL-KDD dataset.In Hybrid LSTM method,the Particle Swarm Optimization(PSO)technique,which is combined to optimize the weights of the LSTM neural network,reduces the prediction error.This deep belief network method is used to extract the features of IP packets,and it identifies DDoS attacks based on PSO-LSTM model.Moreover,it accurately predicts normal network traffic and detects anomalies resulting from DDoS attacks.The proposed PSO-LSTM architecture outperforms the classification techniques including standard Support Vector Machine(SVM)and LSTM in terms of attack detection performance along with the results of the measurement of accuracy,recall,f-measure,precision.展开更多
Distributed denial of service(DDoS)attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user.We proposed a deep neural network(DNN)model for the detection of DDoS attacks...Distributed denial of service(DDoS)attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user.We proposed a deep neural network(DNN)model for the detection of DDoS attacks in the Software-Defined Networking(SDN)paradigm.SDN centralizes the control plane and separates it from the data plane.It simplifies a network and eliminates vendor specification of a device.Because of this open nature and centralized control,SDN can easily become a victim of DDoS attacks.We proposed a supervised Developed Deep Neural Network(DDNN)model that can classify the DDoS attack traffic and legitimate traffic.Our Developed Deep Neural Network(DDNN)model takes a large number of feature values as compared to previously proposed Machine Learning(ML)models.The proposed DNN model scans the data to find the correlated features and delivers high-quality results.The model enhances the security of SDN and has better accuracy as compared to previously proposed models.We choose the latest state-of-the-art dataset which consists of many novel attacks and overcomes all the shortcomings and limitations of the existing datasets.Our model results in a high accuracy rate of 99.76%with a low false-positive rate and 0.065%low loss rate.The accuracy increases to 99.80%as we increase the number of epochs to 100 rounds.Our proposed model classifies anomalous and normal traffic more accurately as compared to the previously proposed models.It can handle a huge amount of structured and unstructured data and can easily solve complex problems.展开更多
Cloud computing is the technology that is currently used to provide users with infrastructure,platform,and software services effectively.Under this system,Platform as a Service(PaaS)offers a medium headed for a web de...Cloud computing is the technology that is currently used to provide users with infrastructure,platform,and software services effectively.Under this system,Platform as a Service(PaaS)offers a medium headed for a web development platform that uniformly distributes the requests and resources.Hackers using Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks abruptly interrupt these requests.Even though several existing methods like signature-based,statistical anomaly-based,and stateful protocol analysis are available,they are not sufficient enough to get rid of Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks and hence there is a great need for a definite algorithm.Concerning this issue,we propose an improved hybrid algorithm which is a combination of Multivariate correlation analysis,Spearman coefficient,and mitigation technique.It can easily differentiate common traffic and attack traffic.Not only that,it greatly helps the network to distribute the resources only for authenticated requests.The effects of comparing with the normalized information have shown an extra encouraging detection accuracy of 99%for the numerous DoS attack as well as DDoS attacks.展开更多
针对现有的DDoS(distributed denial of service)攻击检测模型面临大量数据时,呈现出检测效率低的问题。为适应当前网络环境,通过研究DDoS攻击检测模型、提取流量特征、计算攻击密度,提出一种基于融合稀疏注意力机制的DDoS攻击检测模型G...针对现有的DDoS(distributed denial of service)攻击检测模型面临大量数据时,呈现出检测效率低的问题。为适应当前网络环境,通过研究DDoS攻击检测模型、提取流量特征、计算攻击密度,提出一种基于融合稀疏注意力机制的DDoS攻击检测模型GVBNet(global variable block net),使用攻击密度自适应计算稀疏注意力。利用信息熵以及信息增益分析提取攻击流量的连续字节作为特征向量,通过构建基于GVBNet的网络模型在两种数据集上进行训练。实验结果表明,该方法具有良好的识别效果、检测速度以及抗干扰能力,在不同的环境下具有应用价值。展开更多
The paper puts forward a variance-time plots method based on slide-window mechanism tocalculate the Hurst parameter to detect Distribute Denial of Service(DDoS)attack in real time.Basedon fuzzy logic technology that c...The paper puts forward a variance-time plots method based on slide-window mechanism tocalculate the Hurst parameter to detect Distribute Denial of Service(DDoS)attack in real time.Basedon fuzzy logic technology that can adjust itself dynamically under the fuzzy rules,an intelligent DDoSjudgment mechanism is designed.This new method calculates the Hurst parameter quickly and detectsDDoS attack in real time.Through comparing the detecting technologies based on statistics andfeature-packet respectively under different experiments,it is found that the new method can identifythe change of the Hurst parameter resulting from DDoS attack traffic with different intensities,andintelligently judge DDoS attack self-adaptively in real time.展开更多
Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to acces...Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to access.It introduces the scope and nature of cloud computing.In recent times,all processes are fed into the system for which consumer data and cache size are required.One of the most security issues in the cloud environment is Distributed Denial of Ser-vice(DDoS)attacks,responsible for cloud server overloading.This proposed sys-tem ID3(Iterative Dichotomiser 3)Maximum Multifactor Dimensionality Posteriori Method(ID3-MMDP)is used to overcome the drawback and a rela-tively simple way to execute and for the detection of(DDoS)attack.First,the pro-posed ID3-MMDP method calls for the resources of the cloud platform and then implements the attack detection technology based on information entropy to detect DDoS attacks.Since because the entropy value can show the discrete or aggregated characteristics of the current data set,it can be used for the detection of abnormal dataflow,User-uploaded data,ID3-MMDP system checks and read risk measurement and processing,bug ratingfile size changes,orfile name changes and changes in the format design of the data size entropy value.Unique properties can be used whenever the program approaches any data error to detect abnormal data services.Finally,the experiment also verifies the DDoS attack detection capability algorithm.展开更多
The Software-Defined Networking(SDN)technology improves network management over existing technology via centralized network control.The SDN provides a perfect platform for researchers to solve traditional network’s o...The Software-Defined Networking(SDN)technology improves network management over existing technology via centralized network control.The SDN provides a perfect platform for researchers to solve traditional network’s outstanding issues.However,despite the advantages of centralized control,concern about its security is rising.The more traditional network switched to SDN technology,the more attractive it becomes to malicious actors,especially the controller,because it is the network’s brain.A Distributed Denial of Service(DDoS)attack on the controller could cripple the entire network.For that reason,researchers are always looking for ways to detect DDoS attacks against the controller with higher accuracy and lower false-positive rate.This paper proposes an entropy-based approach to detect low-rate and high-rate DDoS attacks against the SDN controller,regardless of the number of attackers or targets.The proposed approach generalized the Rényi joint entropy for analyzing the network traffic flow to detect DDoS attack traffic flow of varying rates.Using two packet header features and generalized Rényi joint entropy,the proposed approach achieved a better detection rate than the EDDSC approach that uses Shannon entropy metrics.展开更多
The emergence of a new network architecture,known as Software Defined Networking(SDN),in the last two decades has overcome some drawbacks of traditional networks in terms of performance,scalability,reliability,securit...The emergence of a new network architecture,known as Software Defined Networking(SDN),in the last two decades has overcome some drawbacks of traditional networks in terms of performance,scalability,reliability,security,and network management.However,the SDN is vulnerable to security threats that target its controller,such as low-rate Distributed Denial of Service(DDoS)attacks,The low-rate DDoS attack is one of the most prevalent attacks that poses a severe threat to SDN network security because the controller is a vital architecture component.Therefore,there is an urgent need to propose a detection approach for this type of attack with a high detection rate and low false-positive rates.Thus,this paper proposes an approach to detect low-rate DDoS attacks on the SDN controller by adapting a dynamic threshold.The proposed approach has been evaluated using four simulation scenarios covering a combination of low-rate DDoS attacks against the SDN controller involving(i)a single host attack targeting a single victim;(ii)a single host attack targeting multiple victims;(iii)multiple hosts attack targeting a single victim;and(iv)multiple hosts attack targeting multiple victims.The proposed approach’s average detection rates are 96.65%,91.83%,96.17%,and 95.33%for the above scenarios,respectively;and its average false-positive rates are 3.33%,8.17%,3.83%,and 4.67%for similar scenarios,respectively.The comparison between the proposed approach and two existing approaches showed that it outperformed them in both categories.展开更多
An approach of defending against Distributed Denial of Service (DDoS) attack based on flow model and flow detection is presented. The proposed approach can protect targets from DDoS attacking, and allow targets to pro...An approach of defending against Distributed Denial of Service (DDoS) attack based on flow model and flow detection is presented. The proposed approach can protect targets from DDoS attacking, and allow targets to provide good service to legitimate traffic under DDoS attacking, with fast reaction. This approach adopts the technique of dynamic comb filter, yields a low level of false positives of less than 1.5%, drops similar percentage of good traffic, about 1%, and passes neglectable percentage of attack bandwidth to the victim, less than 1.5%. The prototype of commercial product, D-fighter, is developed by implementing this proposed approach on Intel network processor platform IXP1200.展开更多
文摘The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.
文摘Over time, the world has transformed digitally and there is total dependence on the internet. Many more gadgets are continuously interconnected in the internet ecosystem. This fact has made the Internet a global information source for every being. Despite all this, attacker knowledge by cybercriminals has advanced and resulted in different attack methodologies on the internet and its data stores. This paper will discuss the origin and significance of Denial of Service (DoS) and Distributed Denial of Service (DDoS). These kinds of attacks remain the most effective methods used by the bad guys to cause substantial damage in terms of operational, reputational, and financial damage to organizations globally. These kinds of attacks have hindered network performance and availability. The victim’s network is flooded with massive illegal traffic hence, denying genuine traffic from passing through for authorized users. The paper will explore detection mechanisms, and mitigation techniques for this network threat.
文摘The distributed denial of service (DDoS) attack is one of the dangers in intrusion modes. It's difficult to defense and can cause serious damage to the system. Based on a careful study of the attack principles and characteristics, an object-oriented formalized description is presented, which contains a three-level framework and offers full specifications of all kinds of DDoS modes and their features and the relations between one another. Its greatest merit lies in that it contributes to analyzing, checking and judging DDoS. Now this formalized description has been used in a special IDS and it works very effectively.(
基金supported by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(No.2022C01239)National Natural Science Foundation of China(No.52177119)Fundamental Research Funds for the Central Universities(Zhejiang University NGICS Platform).
文摘Electric power grids are evolving into complex cyber-physical power systems(CPPSs)that integrate advanced information and communication technologies(ICTs)but face increasing cyberspace threats and attacks.This study considers CPPS cyberspace security under distributed denial of service(DDoS)attacks and proposes a nonzero-sum game-theoretical model with incomplete information for appropriate allocation of defense resources based on the availability of limited resources.Task time delay is applied to quantify the expected utility as CPPSs have high time requirements and incur massive damage DDoS attacks.Different resource allocation strategies are adopted by attackers and defenders under the three cases of attack-free,failed attack,and successful attack,which lead to a corresponding consumption of resources.A multidimensional node value analysis is designed to introduce physical and cybersecurity indices.Simulation experiments and numerical results demonstrate the effectiveness of the proposed model for the appropriate allocation of defense resources in CPPSs under limited resource availability.
基金extend their appreciation to Researcher Supporting Project Number(RSPD2023R582)King Saud University,Riyadh,Saudi Arabia.
文摘The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.
文摘In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term consequences that businesses encounter. This study integrates findings from various research, including quantitative reports, drawing upon real-world incidents faced by both small and large enterprises. This investigation emphasizes the profound intangible costs, such as trade name devaluation and potential damage to brand reputation, which can persist long after the breach. By collating insights from industry experts and a myriad of research, the study provides a comprehensive perspective on the profound, multi-dimensional impacts of cybersecurity incidents. The overarching aim is to underscore the often-underestimated scope and depth of these breaches, emphasizing the entire timeline post-incident and the urgent need for fortified preventative and reactive measures in the digital domain.
文摘ARP-based Distributed Denial of Service (DDoS) attacks due to ARP-storms can happen in local area networks where many computer systems are infected by worms such as Code Red or by DDoS agents. In ARP attack, the DDoS agents constantly send a barrage of ARP requests to the gateway, or to a victim computer within the same sub-network, and tie up the resource of attacked gateway or host. In this paper, we set to measure the impact of ARP-attack on resource exhaustion of computers in a local area network. Based on attack experiments, we measure the exhaustion of processing and memory resources of a victim computer and also other computers, which are located on the same network as the victim computer. Interestingly enough, it is observed that an ARP-attack not only exhausts resource of the victim computer but also significantly exhausts processing resource of other non-victim computers, which happen to be located on the same local area network as the victim computer.
文摘The recent development of cloud computing offers various services on demand for organization and individual users,such as storage,shared computing space,networking,etc.Although Cloud Computing provides various advantages for users,it remains vulnerable to many types of attacks that attract cyber criminals.Distributed Denial of Service(DDoS)is the most common type of attack on cloud computing.Consequently,Cloud computing professionals and security experts have focused on the growth of preventive processes towards DDoS attacks.Since DDoS attacks have become increasingly widespread,it becomes difficult for some DDoS attack methods based on individual network flow features to distinguish various types of DDoS attacks.Further,the monitoring pattern of traffic changes and accurate detection of DDoS attacks are most important and urgent.In this research work,DDoS attack detection methods based on deep belief network feature extraction and Hybrid Long Short-Term Memory(LSTM)model have been proposed with NSL-KDD dataset.In Hybrid LSTM method,the Particle Swarm Optimization(PSO)technique,which is combined to optimize the weights of the LSTM neural network,reduces the prediction error.This deep belief network method is used to extract the features of IP packets,and it identifies DDoS attacks based on PSO-LSTM model.Moreover,it accurately predicts normal network traffic and detects anomalies resulting from DDoS attacks.The proposed PSO-LSTM architecture outperforms the classification techniques including standard Support Vector Machine(SVM)and LSTM in terms of attack detection performance along with the results of the measurement of accuracy,recall,f-measure,precision.
文摘Distributed denial of service(DDoS)attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user.We proposed a deep neural network(DNN)model for the detection of DDoS attacks in the Software-Defined Networking(SDN)paradigm.SDN centralizes the control plane and separates it from the data plane.It simplifies a network and eliminates vendor specification of a device.Because of this open nature and centralized control,SDN can easily become a victim of DDoS attacks.We proposed a supervised Developed Deep Neural Network(DDNN)model that can classify the DDoS attack traffic and legitimate traffic.Our Developed Deep Neural Network(DDNN)model takes a large number of feature values as compared to previously proposed Machine Learning(ML)models.The proposed DNN model scans the data to find the correlated features and delivers high-quality results.The model enhances the security of SDN and has better accuracy as compared to previously proposed models.We choose the latest state-of-the-art dataset which consists of many novel attacks and overcomes all the shortcomings and limitations of the existing datasets.Our model results in a high accuracy rate of 99.76%with a low false-positive rate and 0.065%low loss rate.The accuracy increases to 99.80%as we increase the number of epochs to 100 rounds.Our proposed model classifies anomalous and normal traffic more accurately as compared to the previously proposed models.It can handle a huge amount of structured and unstructured data and can easily solve complex problems.
文摘Cloud computing is the technology that is currently used to provide users with infrastructure,platform,and software services effectively.Under this system,Platform as a Service(PaaS)offers a medium headed for a web development platform that uniformly distributes the requests and resources.Hackers using Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks abruptly interrupt these requests.Even though several existing methods like signature-based,statistical anomaly-based,and stateful protocol analysis are available,they are not sufficient enough to get rid of Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks and hence there is a great need for a definite algorithm.Concerning this issue,we propose an improved hybrid algorithm which is a combination of Multivariate correlation analysis,Spearman coefficient,and mitigation technique.It can easily differentiate common traffic and attack traffic.Not only that,it greatly helps the network to distribute the resources only for authenticated requests.The effects of comparing with the normalized information have shown an extra encouraging detection accuracy of 99%for the numerous DoS attack as well as DDoS attacks.
基金the Six Heights of Talent in Jiangsu Prov-ince(No.06-E-044).
文摘The paper puts forward a variance-time plots method based on slide-window mechanism tocalculate the Hurst parameter to detect Distribute Denial of Service(DDoS)attack in real time.Basedon fuzzy logic technology that can adjust itself dynamically under the fuzzy rules,an intelligent DDoSjudgment mechanism is designed.This new method calculates the Hurst parameter quickly and detectsDDoS attack in real time.Through comparing the detecting technologies based on statistics andfeature-packet respectively under different experiments,it is found that the new method can identifythe change of the Hurst parameter resulting from DDoS attack traffic with different intensities,andintelligently judge DDoS attack self-adaptively in real time.
文摘Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to access.It introduces the scope and nature of cloud computing.In recent times,all processes are fed into the system for which consumer data and cache size are required.One of the most security issues in the cloud environment is Distributed Denial of Ser-vice(DDoS)attacks,responsible for cloud server overloading.This proposed sys-tem ID3(Iterative Dichotomiser 3)Maximum Multifactor Dimensionality Posteriori Method(ID3-MMDP)is used to overcome the drawback and a rela-tively simple way to execute and for the detection of(DDoS)attack.First,the pro-posed ID3-MMDP method calls for the resources of the cloud platform and then implements the attack detection technology based on information entropy to detect DDoS attacks.Since because the entropy value can show the discrete or aggregated characteristics of the current data set,it can be used for the detection of abnormal dataflow,User-uploaded data,ID3-MMDP system checks and read risk measurement and processing,bug ratingfile size changes,orfile name changes and changes in the format design of the data size entropy value.Unique properties can be used whenever the program approaches any data error to detect abnormal data services.Finally,the experiment also verifies the DDoS attack detection capability algorithm.
基金This work was supported by Universiti Sains Malaysia under external grant(Grant Number 304/PNAV/650958/U154).
文摘The Software-Defined Networking(SDN)technology improves network management over existing technology via centralized network control.The SDN provides a perfect platform for researchers to solve traditional network’s outstanding issues.However,despite the advantages of centralized control,concern about its security is rising.The more traditional network switched to SDN technology,the more attractive it becomes to malicious actors,especially the controller,because it is the network’s brain.A Distributed Denial of Service(DDoS)attack on the controller could cripple the entire network.For that reason,researchers are always looking for ways to detect DDoS attacks against the controller with higher accuracy and lower false-positive rate.This paper proposes an entropy-based approach to detect low-rate and high-rate DDoS attacks against the SDN controller,regardless of the number of attackers or targets.The proposed approach generalized the Rényi joint entropy for analyzing the network traffic flow to detect DDoS attack traffic flow of varying rates.Using two packet header features and generalized Rényi joint entropy,the proposed approach achieved a better detection rate than the EDDSC approach that uses Shannon entropy metrics.
基金This work was supported by Universiti Sains Malaysia under external grant(Grant Number 304/PNAV/650958/U154).
文摘The emergence of a new network architecture,known as Software Defined Networking(SDN),in the last two decades has overcome some drawbacks of traditional networks in terms of performance,scalability,reliability,security,and network management.However,the SDN is vulnerable to security threats that target its controller,such as low-rate Distributed Denial of Service(DDoS)attacks,The low-rate DDoS attack is one of the most prevalent attacks that poses a severe threat to SDN network security because the controller is a vital architecture component.Therefore,there is an urgent need to propose a detection approach for this type of attack with a high detection rate and low false-positive rates.Thus,this paper proposes an approach to detect low-rate DDoS attacks on the SDN controller by adapting a dynamic threshold.The proposed approach has been evaluated using four simulation scenarios covering a combination of low-rate DDoS attacks against the SDN controller involving(i)a single host attack targeting a single victim;(ii)a single host attack targeting multiple victims;(iii)multiple hosts attack targeting a single victim;and(iv)multiple hosts attack targeting multiple victims.The proposed approach’s average detection rates are 96.65%,91.83%,96.17%,and 95.33%for the above scenarios,respectively;and its average false-positive rates are 3.33%,8.17%,3.83%,and 4.67%for similar scenarios,respectively.The comparison between the proposed approach and two existing approaches showed that it outperformed them in both categories.
基金Supported by the National High Technology Research and Development Program of China (863 Program)(No.2003AA142080, 2005AA775060)the National Natural Sicence Foundation of China(No.60203004)National Basic Research Program of China (973Program) (No.2003CB314805)the National Outstanding Youth Foundation (No.60325102)
文摘An approach of defending against Distributed Denial of Service (DDoS) attack based on flow model and flow detection is presented. The proposed approach can protect targets from DDoS attacking, and allow targets to provide good service to legitimate traffic under DDoS attacking, with fast reaction. This approach adopts the technique of dynamic comb filter, yields a low level of false positives of less than 1.5%, drops similar percentage of good traffic, about 1%, and passes neglectable percentage of attack bandwidth to the victim, less than 1.5%. The prototype of commercial product, D-fighter, is developed by implementing this proposed approach on Intel network processor platform IXP1200.