This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy rol...This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy roles,and energy supply and demand dynamics.The systemmodel is developed by considering energy devices as versatile units capable of fulfilling various functionalities and playing multiple roles simultaneously.To strike a balance between optimality and feasibility,renewable energy resources are modeled with considerations for forecasting errors,Gaussian distribution,and penalty factors.Furthermore,this study introduces a distributed event-triggered surplus algorithm designed to address the economic dispatch problem by minimizing production costs.Rooted in surplus theory and finite time projection,the algorithm effectively rectifies network imbalances caused by directed graphs and addresses local inequality constraints.The algorithm greatly reduces the communication burden through event triggering mechanism.Finally,both theoretical proofs and numerical simulations verify the convergence and event-triggered nature of the algorithm.展开更多
Taking an industrial park as an example,this study aims to analyze the characteristics of a distribution network that incorporates distributed energy resources(DERs).The study begins by summarizing the key features of...Taking an industrial park as an example,this study aims to analyze the characteristics of a distribution network that incorporates distributed energy resources(DERs).The study begins by summarizing the key features of a distribution network with DERs based on recent power usage data.To predict and analyze the load growth of the industrial park,an improved back-propagation algorithm is employed.Furthermore,the study classifies users within the industrial park according to their specific power consumption and supply requirements.This user segmentation allows for the introduction of three constraints:node voltage,wire current,and capacity of DERs.By incorporating these constraints,the study constructs an optimization model for the distribution network in the industrial park,with the objective of minimizing the total operation and maintenance cost.The primary goal of these optimizations is to address the needs of DERs connected to the distribution network,while simultaneously mitigating their potential adverse impact on the network.Additionally,the study aims to enhance the overall energy efficiency of the industrial park through more efficient utilization of resources.展开更多
Statistical distributions are used to model wind speed,and the twoparameters Weibull distribution has proven its effectiveness at characterizing wind speed.Accurate estimation of Weibull parameters,the scale(c)and sha...Statistical distributions are used to model wind speed,and the twoparameters Weibull distribution has proven its effectiveness at characterizing wind speed.Accurate estimation of Weibull parameters,the scale(c)and shape(k),is crucial in describing the actual wind speed data and evaluating the wind energy potential.Therefore,this study compares the most common conventional numerical(CN)estimation methods and the recent intelligent optimization algorithms(IOA)to show how precise estimation of c and k affects the wind energy resource assessments.In addition,this study conducts technical and economic feasibility studies for five sites in the northern part of Saudi Arabia,namely Aljouf,Rafha,Tabuk,Turaif,and Yanbo.Results exhibit that IOAs have better performance in attaining optimal Weibull parameters and provided an adequate description of the observed wind speed data.Also,with six wind turbine technologies rating between 1 and 3MW,the technical and economic assessment results reveal that the CN methods tend to overestimate the energy output and underestimate the cost of energy($/kWh)compared to the assessments by IOAs.The energy cost analyses show that Turaif is the windiest site,with an electricity cost of$0.016906/kWh.The highest wind energy output is obtained with the wind turbine having a rated power of 2.5 MW at all considered sites with electricity costs not exceeding$0.02739/kWh.Finally,the outcomes of this study exhibit the potential of wind energy in Saudi Arabia,and its environmental goals can be acquired by harvesting wind energy.展开更多
Highly penetration of Distributed Energy Resources (DER) on the grid systems nowadays makes the systems grow dynamically. The system become more complex and the protection system become more complicated. The protectio...Highly penetration of Distributed Energy Resources (DER) on the grid systems nowadays makes the systems grow dynamically. The system become more complex and the protection system become more complicated. The protection relay should accommodate the system changes according to the system conditions and topologies. As part of developmental aspect of Distributed Artificial Intelligent, Multi Agent System (MAS) is a challenging method for improving the intelligent properties of relay protection. This paper introduces the use of MAS approach on radial distribution system protection dominated with DER using dispersed adaptive rule-based protection supported by distributed database agent. The simulation results confirmed that the proposed algorithm can respond within 15.05 ms.展开更多
In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-in...In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-integrated DRL algorithm guides the RVPP to participate effectively in both the day-ahead and real-time markets,lowering the electricity purchase costs and consumption risks for end-users.The Lagrangian relaxation technique is introduced to transform the constrained Markov decision process(CMDP)into an unconstrained optimization problem,which guarantees that the constraints are strictly satisfied without determining the penalty coefficients.Furthermore,to enhance the scalability of the constrained soft actor-critic(CSAC)-based RVPP scheduling approach,a fully distributed scheduling architecture was designed to enable plug-and-play in the residential distributed energy resources(RDER).Case studies performed on the constructed RVPP scenario validated the performance of the proposed methodology in enhancing the responsiveness of the RDER to power tariffs,balancing the supply and demand of the power grid,and ensuring customer comfort.展开更多
In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a sma...In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a smarter and more reliable electricity provider.DER consists of gas turbines and renewable energy sources such as photovoltaic systems and wind turbines.Better bidding strategies,prepared by MG operators,decrease the electricity cost and emissions from upstream grid and conventional and renewable energy sources(RES).But it is inefficient due to the very high sporadic characteristics of RES and the very high outage rate.To solve these issues,this study suggests non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ)for an optimal bidding strategy considering pumped hydroelectric energy storage and DRP based on outage conditions and uncertainties of renewable energy sources.The uncertainty related to solar and wind units is modeled using lognormal and Weibull probability distributions.TOU-based DRP is used,especially considering the time of outages along with the time of peak loads and prices,to enhance the reliability of MG and reduce costs and emissions.展开更多
Power conditioner, that is responsible for electric power conversion, is a critical component used in many renewable energy power generation systems. Most of the electric power produced by distributed energy resources...Power conditioner, that is responsible for electric power conversion, is a critical component used in many renewable energy power generation systems. Most of the electric power produced by distributed energy resources cannot directly import to utility network without power conversion. Meanwhile, power conversion may includes several different types, for example AC/DC, and DC/AC, which is realized by a variety types of power conditioners in the electric power system. Currently, many concerns are focused on the operation of these power conditioners used in distributed energy resources due to the worse designing may cause the terrible influence on safety and performance characteristic of distributed energy resources. The power quality and reliability of interconnected electric power network may be affected as well. In the view of this, IEEE standards board provides a uniform standard for interconnection of distributed resources with electric power systems. It provides requirements relevant to the performance, operation, testing, safety considerations, and maintenance of the interconnection. Based on the IEEE 1547 standard, this paper presents a test system for power conditioners that are used in distributed energy resources or other renewable energy applications. Some of the test items that described in IEEE 1547.1 relevant to interconnection issues can be realized by proposed test system.展开更多
Distributed energy systems(DES),as an integrated energy system with coupled distributed energy resources,have great potential in reducing carbon dioxide emissions and improving energy efficiencies.Considering the back...Distributed energy systems(DES),as an integrated energy system with coupled distributed energy resources,have great potential in reducing carbon dioxide emissions and improving energy efficiencies.Considering the background of urbanization and the energy revolution in China,the study investigates the renewable-based DESs supply modes and their application in China.A new method is proposed to classify DESs supply modes into three categories considering the renewable resource in domination,and their application domains are discussed.A comprehensive model is given for economic and environmental evaluation.Typical case studies show that the renewable-based DES systems can supply the energy in a cost-effective and environment-friendly way.Among them,the biomass waste dominated supply mode can not only achieve"zero"carbon emissions but also"zero"energy consumption,even though not yet economically attractive under the present policy and market conditions.Thus,recommendations are given to promote the further deployment of renewable-based DESs,regarding their supply modes,policy requirements,and issues to be addressed.展开更多
With the rapid increasing of maritime activities, maritime wireless networks(MWNs) with high reliability, high energy efficiency, and low delay are required. However, the centralized networking with fixed resource sch...With the rapid increasing of maritime activities, maritime wireless networks(MWNs) with high reliability, high energy efficiency, and low delay are required. However, the centralized networking with fixed resource scheduling is not suitable for MWNs due to the special environment. In this paper,we introduce the collaborative relay communication in distributed MWNs to improve the link reliability, and propose an orthogonal time-frequency resource block reservation based multiple access(RRMA) scheme for both one-hop direct link and two-hop collaborative relay link to reduce the interference. To further improve the network performance, we formulate an energy efficiency(EE) maximization resource allocation problem and solve it by an iterative algorithm based on the Dinkelbach method. Finally, numerical results are provided to investigate the proposed RRMA scheme and resource allocation algorithm, showing that the low outage probability and transmission delay can be attained by the proposed RRMA scheme. Moreover,the proposed resource allocation algorithm is capable of achieving high EE in distributed MWNs.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
The design of a bidirectional dc-dc power converter specifically for a distributed energy application is presented. The existing two different DC voltage battery bank of the distributed generation needs to interlink e...The design of a bidirectional dc-dc power converter specifically for a distributed energy application is presented. The existing two different DC voltage battery bank of the distributed generation needs to interlink each other using a bi-directional dc-dc converter in order to minimize the unbalance of the output load currents of the three inverters connected to electric grid system. Through this connection, a current can flow from one system to another or vice versa depending on which systems need the current most. Thus, unbalanced currents of the grid line have been minimized and the reliability and performance of the DER grid connected system has been increased. A detailed mathematical analysis of the converter under steady state and transient condition are presented. Mathematical models for boost and buck modes are being derived and the simulink model is constructed in order to simulate the system. Moreover, the model has been validated on the actual operation of the converter, showing that the simulated results in Matlab Simulink are consistent with the experimental ones.展开更多
The part of China,east of the Hu Huanyong Line,is commonly referred to as eastern China.It is characterized by a high population density and a well-developed economy;it also has huge energy demands.This study assesses...The part of China,east of the Hu Huanyong Line,is commonly referred to as eastern China.It is characterized by a high population density and a well-developed economy;it also has huge energy demands.This study assesses and promotes the large-scale development of geothermal resources in eastern China by analyzing deep geological structures,geothermal regimes,and typical geothermal systems.These analyses are based on data collected from geotectology,deep geophysics,geothermics,structural geology,and petrology.Determining the distribution patterns of intermediate-to-deep geothermal resources in the region helps develop prospects for their exploitation and utilization.Eastern China hosts superimposed layers of rocks from three major,global tectonic domainsd namely Paleo-Asian,Circum-Pacific,and Tethyan rocks.The structure of its crust and mantle exhibits a special flyover pattern,with basins and mountains as well as well-spaced uplifts and depressions alternatively on top.The lithosphere in Northeast China and North China is characterized by a thin,low density crust and mantle,whereas the lithosphere in South China has a thin,low density crust and a thick,high density mantle.The middle and upper crust contain geobodies with high conductivity and low velocity,with varying degrees of development that create favorable conditions for the formation and enrichment of geothermal resources.Moderate-to-high temperature geothermal resources are distributed in the MesozoiceCenozoic basins in eastern China,although moderate temperature geothermal resources with low abundance dominate.Porous sandstone reservoirs,karstified fractured-vuggy carbonate reservoirs,and fissured granite reservoirs are the main types of geothermal reservoirs in this region.Under the currently available technical conditions,the exploitation and utilization of geothermal resources in eastern China favor direct utilization over large-scale geothermal power generation.In Northeast China and North China,geothermal resources could be applied for large-scale geothermal heating purposes;geothermal heating could be applied during winter along parts of the Yangtze River while geothermal cooling would be more suitable for summer there;geothermal cooling could also be applied to much of South China.Geothermal resources can also be applied to high value-added industries,to aid agricultural practices,and for tourism.展开更多
基金The Science and Technology Project of the State Grid Corporation of China(Research and Demonstration of Loss Reduction Technology Based on Reactive Power Potential Exploration and Excitation of Distributed Photovoltaic-Energy Storage Converters:5400-202333241A-1-1-ZN).
文摘This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy roles,and energy supply and demand dynamics.The systemmodel is developed by considering energy devices as versatile units capable of fulfilling various functionalities and playing multiple roles simultaneously.To strike a balance between optimality and feasibility,renewable energy resources are modeled with considerations for forecasting errors,Gaussian distribution,and penalty factors.Furthermore,this study introduces a distributed event-triggered surplus algorithm designed to address the economic dispatch problem by minimizing production costs.Rooted in surplus theory and finite time projection,the algorithm effectively rectifies network imbalances caused by directed graphs and addresses local inequality constraints.The algorithm greatly reduces the communication burden through event triggering mechanism.Finally,both theoretical proofs and numerical simulations verify the convergence and event-triggered nature of the algorithm.
基金supported by the Shanghai Municipal Social Science Foundation(No.2020BGL032).
文摘Taking an industrial park as an example,this study aims to analyze the characteristics of a distribution network that incorporates distributed energy resources(DERs).The study begins by summarizing the key features of a distribution network with DERs based on recent power usage data.To predict and analyze the load growth of the industrial park,an improved back-propagation algorithm is employed.Furthermore,the study classifies users within the industrial park according to their specific power consumption and supply requirements.This user segmentation allows for the introduction of three constraints:node voltage,wire current,and capacity of DERs.By incorporating these constraints,the study constructs an optimization model for the distribution network in the industrial park,with the objective of minimizing the total operation and maintenance cost.The primary goal of these optimizations is to address the needs of DERs connected to the distribution network,while simultaneously mitigating their potential adverse impact on the network.Additionally,the study aims to enhance the overall energy efficiency of the industrial park through more efficient utilization of resources.
基金The author extends his appreciation to theDeputyship forResearch&Innovation,Ministry of Education,Saudi Arabia for funding this research work through the Project Number(QUIF-4-3-3-33891)。
文摘Statistical distributions are used to model wind speed,and the twoparameters Weibull distribution has proven its effectiveness at characterizing wind speed.Accurate estimation of Weibull parameters,the scale(c)and shape(k),is crucial in describing the actual wind speed data and evaluating the wind energy potential.Therefore,this study compares the most common conventional numerical(CN)estimation methods and the recent intelligent optimization algorithms(IOA)to show how precise estimation of c and k affects the wind energy resource assessments.In addition,this study conducts technical and economic feasibility studies for five sites in the northern part of Saudi Arabia,namely Aljouf,Rafha,Tabuk,Turaif,and Yanbo.Results exhibit that IOAs have better performance in attaining optimal Weibull parameters and provided an adequate description of the observed wind speed data.Also,with six wind turbine technologies rating between 1 and 3MW,the technical and economic assessment results reveal that the CN methods tend to overestimate the energy output and underestimate the cost of energy($/kWh)compared to the assessments by IOAs.The energy cost analyses show that Turaif is the windiest site,with an electricity cost of$0.016906/kWh.The highest wind energy output is obtained with the wind turbine having a rated power of 2.5 MW at all considered sites with electricity costs not exceeding$0.02739/kWh.Finally,the outcomes of this study exhibit the potential of wind energy in Saudi Arabia,and its environmental goals can be acquired by harvesting wind energy.
文摘Highly penetration of Distributed Energy Resources (DER) on the grid systems nowadays makes the systems grow dynamically. The system become more complex and the protection system become more complicated. The protection relay should accommodate the system changes according to the system conditions and topologies. As part of developmental aspect of Distributed Artificial Intelligent, Multi Agent System (MAS) is a challenging method for improving the intelligent properties of relay protection. This paper introduces the use of MAS approach on radial distribution system protection dominated with DER using dispersed adaptive rule-based protection supported by distributed database agent. The simulation results confirmed that the proposed algorithm can respond within 15.05 ms.
基金supported by the Sichuan Science and Technology Program(grant number 2022YFG0123).
文摘In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-integrated DRL algorithm guides the RVPP to participate effectively in both the day-ahead and real-time markets,lowering the electricity purchase costs and consumption risks for end-users.The Lagrangian relaxation technique is introduced to transform the constrained Markov decision process(CMDP)into an unconstrained optimization problem,which guarantees that the constraints are strictly satisfied without determining the penalty coefficients.Furthermore,to enhance the scalability of the constrained soft actor-critic(CSAC)-based RVPP scheduling approach,a fully distributed scheduling architecture was designed to enable plug-and-play in the residential distributed energy resources(RDER).Case studies performed on the constructed RVPP scenario validated the performance of the proposed methodology in enhancing the responsiveness of the RDER to power tariffs,balancing the supply and demand of the power grid,and ensuring customer comfort.
文摘In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a smarter and more reliable electricity provider.DER consists of gas turbines and renewable energy sources such as photovoltaic systems and wind turbines.Better bidding strategies,prepared by MG operators,decrease the electricity cost and emissions from upstream grid and conventional and renewable energy sources(RES).But it is inefficient due to the very high sporadic characteristics of RES and the very high outage rate.To solve these issues,this study suggests non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ)for an optimal bidding strategy considering pumped hydroelectric energy storage and DRP based on outage conditions and uncertainties of renewable energy sources.The uncertainty related to solar and wind units is modeled using lognormal and Weibull probability distributions.TOU-based DRP is used,especially considering the time of outages along with the time of peak loads and prices,to enhance the reliability of MG and reduce costs and emissions.
文摘Power conditioner, that is responsible for electric power conversion, is a critical component used in many renewable energy power generation systems. Most of the electric power produced by distributed energy resources cannot directly import to utility network without power conversion. Meanwhile, power conversion may includes several different types, for example AC/DC, and DC/AC, which is realized by a variety types of power conditioners in the electric power system. Currently, many concerns are focused on the operation of these power conditioners used in distributed energy resources due to the worse designing may cause the terrible influence on safety and performance characteristic of distributed energy resources. The power quality and reliability of interconnected electric power network may be affected as well. In the view of this, IEEE standards board provides a uniform standard for interconnection of distributed resources with electric power systems. It provides requirements relevant to the performance, operation, testing, safety considerations, and maintenance of the interconnection. Based on the IEEE 1547 standard, this paper presents a test system for power conditioners that are used in distributed energy resources or other renewable energy applications. Some of the test items that described in IEEE 1547.1 relevant to interconnection issues can be realized by proposed test system.
基金supported by National Key Research and Development Program of China(No.2016YFB0900100)Sate Grid of China(Research on the development potential evaluation of distributed generation and its management and control and operation optimization technology under scaleup development stage.No.1400-201927279A-0-0-00)
文摘Distributed energy systems(DES),as an integrated energy system with coupled distributed energy resources,have great potential in reducing carbon dioxide emissions and improving energy efficiencies.Considering the background of urbanization and the energy revolution in China,the study investigates the renewable-based DESs supply modes and their application in China.A new method is proposed to classify DESs supply modes into three categories considering the renewable resource in domination,and their application domains are discussed.A comprehensive model is given for economic and environmental evaluation.Typical case studies show that the renewable-based DES systems can supply the energy in a cost-effective and environment-friendly way.Among them,the biomass waste dominated supply mode can not only achieve"zero"carbon emissions but also"zero"energy consumption,even though not yet economically attractive under the present policy and market conditions.Thus,recommendations are given to promote the further deployment of renewable-based DESs,regarding their supply modes,policy requirements,and issues to be addressed.
基金supported in part by the National Natural Science Foundation of China under Grant 62001056, 61925101, U21A20444in part by the Fundamental Research Funds for the Central Universities under Grant 500421336 and Grant 505021163。
文摘With the rapid increasing of maritime activities, maritime wireless networks(MWNs) with high reliability, high energy efficiency, and low delay are required. However, the centralized networking with fixed resource scheduling is not suitable for MWNs due to the special environment. In this paper,we introduce the collaborative relay communication in distributed MWNs to improve the link reliability, and propose an orthogonal time-frequency resource block reservation based multiple access(RRMA) scheme for both one-hop direct link and two-hop collaborative relay link to reduce the interference. To further improve the network performance, we formulate an energy efficiency(EE) maximization resource allocation problem and solve it by an iterative algorithm based on the Dinkelbach method. Finally, numerical results are provided to investigate the proposed RRMA scheme and resource allocation algorithm, showing that the low outage probability and transmission delay can be attained by the proposed RRMA scheme. Moreover,the proposed resource allocation algorithm is capable of achieving high EE in distributed MWNs.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
文摘The design of a bidirectional dc-dc power converter specifically for a distributed energy application is presented. The existing two different DC voltage battery bank of the distributed generation needs to interlink each other using a bi-directional dc-dc converter in order to minimize the unbalance of the output load currents of the three inverters connected to electric grid system. Through this connection, a current can flow from one system to another or vice versa depending on which systems need the current most. Thus, unbalanced currents of the grid line have been minimized and the reliability and performance of the DER grid connected system has been increased. A detailed mathematical analysis of the converter under steady state and transient condition are presented. Mathematical models for boost and buck modes are being derived and the simulink model is constructed in order to simulate the system. Moreover, the model has been validated on the actual operation of the converter, showing that the simulated results in Matlab Simulink are consistent with the experimental ones.
基金This work was funded by a number of scientific research programs,including grants from the National Key Research and Development Program of China,titled‘Evaluation and Optimal Target Selection of Deep Geothermal Resources in the Igneous Province in South China’(Project No.2019YFC0604903)‘Analysis and Geothermal Reservoir Stimulation Methods of Deep High-temperature Geothermal Systems in East China’(Project No.2021YFA0716004)+2 种基金a grant from the Joint Fund Program of the National Natural Science Foundation of China and Sinopec,titled‘Deep Geological Processes and Resource Effects of Basins’(Project No.U20B6001)two grants from the Sinopec Science and Technology Research Program,titled'Single well evaluation of Well Fushenre 1 and study on the potential of deep geothermal resources in Hainan'(Project No.P23131)‘Siting and Target Evaluation of Deep Geothermal Resources in Key Areas of Southeastern China’(Project No.P20041-1).
文摘The part of China,east of the Hu Huanyong Line,is commonly referred to as eastern China.It is characterized by a high population density and a well-developed economy;it also has huge energy demands.This study assesses and promotes the large-scale development of geothermal resources in eastern China by analyzing deep geological structures,geothermal regimes,and typical geothermal systems.These analyses are based on data collected from geotectology,deep geophysics,geothermics,structural geology,and petrology.Determining the distribution patterns of intermediate-to-deep geothermal resources in the region helps develop prospects for their exploitation and utilization.Eastern China hosts superimposed layers of rocks from three major,global tectonic domainsd namely Paleo-Asian,Circum-Pacific,and Tethyan rocks.The structure of its crust and mantle exhibits a special flyover pattern,with basins and mountains as well as well-spaced uplifts and depressions alternatively on top.The lithosphere in Northeast China and North China is characterized by a thin,low density crust and mantle,whereas the lithosphere in South China has a thin,low density crust and a thick,high density mantle.The middle and upper crust contain geobodies with high conductivity and low velocity,with varying degrees of development that create favorable conditions for the formation and enrichment of geothermal resources.Moderate-to-high temperature geothermal resources are distributed in the MesozoiceCenozoic basins in eastern China,although moderate temperature geothermal resources with low abundance dominate.Porous sandstone reservoirs,karstified fractured-vuggy carbonate reservoirs,and fissured granite reservoirs are the main types of geothermal reservoirs in this region.Under the currently available technical conditions,the exploitation and utilization of geothermal resources in eastern China favor direct utilization over large-scale geothermal power generation.In Northeast China and North China,geothermal resources could be applied for large-scale geothermal heating purposes;geothermal heating could be applied during winter along parts of the Yangtze River while geothermal cooling would be more suitable for summer there;geothermal cooling could also be applied to much of South China.Geothermal resources can also be applied to high value-added industries,to aid agricultural practices,and for tourism.