Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature ...Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications.展开更多
The accuracy of temperature measurement is often reduced due to random noise in Raman-based distributed temperature sensor (RDTS). A noise reduction method based on a nonlinear filter is thus proposed in this paper. C...The accuracy of temperature measurement is often reduced due to random noise in Raman-based distributed temperature sensor (RDTS). A noise reduction method based on a nonlinear filter is thus proposed in this paper. Compared with the temperature demodulation results of raw signals, the proposed method in this paper can reduce the average maximum deviation of temperature measurement results from 4.1°C to 1.2°C at 40.0°C, 50.0°C and 60.0°C. And the proposed method in this paper can improve the accuracy of temperature measurement of Raman-based distributed temperature sensor better than the commonly used wavelet transform-based method. The advantages of the proposed method in improving the accuracy of temperature measurement for Raman-based distributed temperature sensor are quantitatively reflected in the maximum deviation and root mean square error of temperature measurement results. Therefore, this paper proposes an effective and feasible method to improve the accuracy of temperature measurement results for Raman-based distributed temperature sensor.展开更多
A novel nonlinear mirror structure which can increase the optical signal-to-noise ratio of a distributed fiber Raman temperature sensor is proposed, and 6 dB improvement of the optical signal-to-noise ratio is obtaine...A novel nonlinear mirror structure which can increase the optical signal-to-noise ratio of a distributed fiber Raman temperature sensor is proposed, and 6 dB improvement of the optical signal-to-noise ratio is obtained. With the assistance of the nonlinear mirror, we demonstrate that the spatial resolution of the sensor is improved from 3 m to 1 m, and the temperature accuracy is improved from ±0.6℃ to ±0.2℃. The theoretical analysis and the experimental data are in good agreement.展开更多
The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibil...The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibility with traditional system and the characteristics of distributed optical fiber temperature sensor is considered before Modbus TCP/IP protocol is chosen. The protocol is implemented with open source component Indy. The Modbus TCP/IP protocol used in the system is proved to be fast and robust.展开更多
针对注水井分层注水量诊断技术难题,提出基于分布式光纤温度传感(Distributed Temperature Sensing,DTS)的注水井吸水剖面解释方法。建立考虑微量热效应的注水井温度剖面预测模型,模拟分析注水量、注水时间、储层导热系数等7个因素对温...针对注水井分层注水量诊断技术难题,提出基于分布式光纤温度传感(Distributed Temperature Sensing,DTS)的注水井吸水剖面解释方法。建立考虑微量热效应的注水井温度剖面预测模型,模拟分析注水量、注水时间、储层导热系数等7个因素对温度剖面的影响规律。通过正交试验模拟分析,确定不同因素对注水井温度剖面的影响程度从强到弱分别为注入水温度、注水时间、注水量、井筒半径、储层导热系数、井筒倾斜角度、注水层渗透率,明确影响注水井温度剖面的主控因素为注入水温度、注水时间和注入量。采用模拟退火(Simulated Annealing,SA)算法建立注水井DTS数据反演模型,对一口注水井现场实测DTS数据进行反演,获得较为准确的吸水剖面,单层最大吸水量误差百分比14.25%,平均误差11.09%,验证该反演方法的可靠性。通过DTS数据反演可以实现注水井吸水剖面定量解释,为注水效果评价提供直接依据。展开更多
As fiber optic distributed scattering sensing systems are providing innovative solutions for the monitoring of large structures,the comparison of different techniques and solutions is difficult because of the lack of ...As fiber optic distributed scattering sensing systems are providing innovative solutions for the monitoring of large structures,the comparison of different techniques and solutions is difficult because of the lack of standardized specifications and the difficulty associated to the characterization of such systems.The article presents a tentative definition of performance specifications and qualification procedures applicable to fiber optic distributed sensing systems aiming at providing clear guidelines for their design,specifications,qualification,application and selection.展开更多
笔者通过分析确定了混凝土温度场仿真分析中的4个热学反演参数,以混凝土温度仿真值和分布式光纤测温系统DTS(Distributed Temperature Sensoring)实测值的差值平方和作为准则函数,对云南省万家口子水电站高碾压混凝土拱坝(167.5 m)4号...笔者通过分析确定了混凝土温度场仿真分析中的4个热学反演参数,以混凝土温度仿真值和分布式光纤测温系统DTS(Distributed Temperature Sensoring)实测值的差值平方和作为准则函数,对云南省万家口子水电站高碾压混凝土拱坝(167.5 m)4号坝段的三维温度场进行反演分析。反演结果与光纤监测结果十分接近,证明了反演方法具有较高的可行性和可靠性。将光纤监测温度场作为初始条件,利用反演得到的热学参数进行了正向仿真预测分析,得到更为精确的温度场分布规律,从而解决了光纤监测温度场的孤岛和跳跃性问题,可为设计和现场施工中的温控措施调整提供指导。展开更多
基金The authors grate fully acknowledge the financial support provided by the National Natural Science Foundation of China(Grant Nos.42225702 and 42077235)the Open Research Project Program of the State Key Laboratory of Internet of Things for Smart City(University of Macao),China(Grant No.SKUoTSC(UM)-2021-2023/0RP/GA10/2022).
文摘Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications.
文摘The accuracy of temperature measurement is often reduced due to random noise in Raman-based distributed temperature sensor (RDTS). A noise reduction method based on a nonlinear filter is thus proposed in this paper. Compared with the temperature demodulation results of raw signals, the proposed method in this paper can reduce the average maximum deviation of temperature measurement results from 4.1°C to 1.2°C at 40.0°C, 50.0°C and 60.0°C. And the proposed method in this paper can improve the accuracy of temperature measurement of Raman-based distributed temperature sensor better than the commonly used wavelet transform-based method. The advantages of the proposed method in improving the accuracy of temperature measurement for Raman-based distributed temperature sensor are quantitatively reflected in the maximum deviation and root mean square error of temperature measurement results. Therefore, this paper proposes an effective and feasible method to improve the accuracy of temperature measurement results for Raman-based distributed temperature sensor.
基金supported by the National Natural Science Foundation of China under Grant No.60377021partially supported by Program for New Century Excellent Talents in University under Grant No. NCET-07-0152Sichuan Scientific Funds for Young Researchers under Grant No. 08ZQ026-012.
文摘A novel nonlinear mirror structure which can increase the optical signal-to-noise ratio of a distributed fiber Raman temperature sensor is proposed, and 6 dB improvement of the optical signal-to-noise ratio is obtained. With the assistance of the nonlinear mirror, we demonstrate that the spatial resolution of the sensor is improved from 3 m to 1 m, and the temperature accuracy is improved from ±0.6℃ to ±0.2℃. The theoretical analysis and the experimental data are in good agreement.
基金supported by the National Natural Science Foundation of China under Grant No. 60608009Science Foundation of Zhejiang Province under Grant No. Y107091 and ScienceTechnology Department of Zhejiang Province under Grant No. 2008C21172.
文摘The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibility with traditional system and the characteristics of distributed optical fiber temperature sensor is considered before Modbus TCP/IP protocol is chosen. The protocol is implemented with open source component Indy. The Modbus TCP/IP protocol used in the system is proved to be fast and robust.
文摘针对注水井分层注水量诊断技术难题,提出基于分布式光纤温度传感(Distributed Temperature Sensing,DTS)的注水井吸水剖面解释方法。建立考虑微量热效应的注水井温度剖面预测模型,模拟分析注水量、注水时间、储层导热系数等7个因素对温度剖面的影响规律。通过正交试验模拟分析,确定不同因素对注水井温度剖面的影响程度从强到弱分别为注入水温度、注水时间、注水量、井筒半径、储层导热系数、井筒倾斜角度、注水层渗透率,明确影响注水井温度剖面的主控因素为注入水温度、注水时间和注入量。采用模拟退火(Simulated Annealing,SA)算法建立注水井DTS数据反演模型,对一口注水井现场实测DTS数据进行反演,获得较为准确的吸水剖面,单层最大吸水量误差百分比14.25%,平均误差11.09%,验证该反演方法的可靠性。通过DTS数据反演可以实现注水井吸水剖面定量解释,为注水效果评价提供直接依据。
文摘As fiber optic distributed scattering sensing systems are providing innovative solutions for the monitoring of large structures,the comparison of different techniques and solutions is difficult because of the lack of standardized specifications and the difficulty associated to the characterization of such systems.The article presents a tentative definition of performance specifications and qualification procedures applicable to fiber optic distributed sensing systems aiming at providing clear guidelines for their design,specifications,qualification,application and selection.
文摘笔者通过分析确定了混凝土温度场仿真分析中的4个热学反演参数,以混凝土温度仿真值和分布式光纤测温系统DTS(Distributed Temperature Sensoring)实测值的差值平方和作为准则函数,对云南省万家口子水电站高碾压混凝土拱坝(167.5 m)4号坝段的三维温度场进行反演分析。反演结果与光纤监测结果十分接近,证明了反演方法具有较高的可行性和可靠性。将光纤监测温度场作为初始条件,利用反演得到的热学参数进行了正向仿真预测分析,得到更为精确的温度场分布规律,从而解决了光纤监测温度场的孤岛和跳跃性问题,可为设计和现场施工中的温控措施调整提供指导。