In this paper, a rainfall-runoff modeling system is developed based on a nonlinear Volterra functional series and a hydrological conceptual modeling approach. Two models, i.e. the time-variant gain model (TVGM) and th...In this paper, a rainfall-runoff modeling system is developed based on a nonlinear Volterra functional series and a hydrological conceptual modeling approach. Two models, i.e. the time-variant gain model (TVGM) and the distributed time-variant gain model (DTVGM) that are built on the platform of Digital Elevation Model (DEM), Remote Sensing (RS) and Unit Hydro-logical Process were proposed. The developed DTVGM model was applied to two cases in the Heihe River Basin that is located in the arid and semiarid region of northwestern China and the Chaobai River basin located in the semihumid region of northern China. The results indicate that, in addition to the classic dynamic differential approach to describe nonlinear processes in hy-drological systems, it is possible to study such complex processes through the proposed sys-tematic approach to identify prominent hydrological relations. The DTVGM, coupling the advan-tages of both nonlinear and distributed hydrological models, can simulate variant hydrological processes under different environment conditions. Satisfactory results were obtained in fore-casting the time-space variations of hydrological processes and the relationships between land use/cover change and surface runoff variation.展开更多
Runoff is a major component of the water cycle, and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions. This paper coupled the Distributed Time Variant Gain Mod...Runoff is a major component of the water cycle, and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions. This paper coupled the Distributed Time Variant Gain Model (DTVGM) into the Community Land Model (CLM 3.5), replacing the TOPMODEL-based method to simulate runoff in the arid and semi-arid regions of China. The coupled model was calibrated at five gauging stations for the period 1980-2005 and validated for the period 2006-2010. Then, future runoff (2010-2100) was simulated for different Representative Concentration Pathways (RCP) emission scenarios. After that, the spatial distributions of the future runoff for these scenarios were discussed, and the multi-scale fluctuation characteristics of the future annual runoff for the RCP scenarios were explored using the Ensemble Empirical Mode Decomposition (EEMD) analysis method. Finally, the decadal variabilities of the future annual runoff for the entire study area and the five catchments in it were investigated. The results showed that the future annual runoff had slowly decreasing trends for scenarios RCP 2.6 and RCP 8.5 during the period 2010-2100, whereas it had a non-monotonic trend for the RCP 4.5 scenario, with a slow increase after the 2050s. Additionally, the future annual runoff clearly varied over a decadal time scale, indicating that it had clear divisions between dry and wet periods. The longest dry period was approximately 15 years (2040-2055) for the RCP 2.6 scenario and 25 years (2045-2070) for the RCP 4.5 scenario. However, the RCP 8.5 scenario was predicted to have a long dry period starting from 2045. Under these scenarios, the water resources situation of the study area will be extremely severe. Therefore, adaptive water management measures addressing climate change should be adopted to proactively confront the risks of water resources.展开更多
基金the Hundred Talents Program and Knowledge Innovation Key Project and the Outstanding Overseas Chinese Scholars Program of the Chinese Academy of Sciences(Grant No.KZCX2-SW-317/KZCX1-09-02) the National Natural Science Foundation of China(Grant No.50279049).
文摘In this paper, a rainfall-runoff modeling system is developed based on a nonlinear Volterra functional series and a hydrological conceptual modeling approach. Two models, i.e. the time-variant gain model (TVGM) and the distributed time-variant gain model (DTVGM) that are built on the platform of Digital Elevation Model (DEM), Remote Sensing (RS) and Unit Hydro-logical Process were proposed. The developed DTVGM model was applied to two cases in the Heihe River Basin that is located in the arid and semiarid region of northwestern China and the Chaobai River basin located in the semihumid region of northern China. The results indicate that, in addition to the classic dynamic differential approach to describe nonlinear processes in hy-drological systems, it is possible to study such complex processes through the proposed sys-tematic approach to identify prominent hydrological relations. The DTVGM, coupling the advan-tages of both nonlinear and distributed hydrological models, can simulate variant hydrological processes under different environment conditions. Satisfactory results were obtained in fore-casting the time-space variations of hydrological processes and the relationships between land use/cover change and surface runoff variation.
基金supported by the National Basic Research Program of China(2012CB956204)We acknowledge the modeling groups for providing the data for analysis,the Program for Climate Model Diagnosis and Intercomparison(PCMDI)the World Climate Research Programme’s(WCRP’s)Coupled Model Intercomparison Project for collecting and archiving the model output and organizing the data analysis
文摘Runoff is a major component of the water cycle, and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions. This paper coupled the Distributed Time Variant Gain Model (DTVGM) into the Community Land Model (CLM 3.5), replacing the TOPMODEL-based method to simulate runoff in the arid and semi-arid regions of China. The coupled model was calibrated at five gauging stations for the period 1980-2005 and validated for the period 2006-2010. Then, future runoff (2010-2100) was simulated for different Representative Concentration Pathways (RCP) emission scenarios. After that, the spatial distributions of the future runoff for these scenarios were discussed, and the multi-scale fluctuation characteristics of the future annual runoff for the RCP scenarios were explored using the Ensemble Empirical Mode Decomposition (EEMD) analysis method. Finally, the decadal variabilities of the future annual runoff for the entire study area and the five catchments in it were investigated. The results showed that the future annual runoff had slowly decreasing trends for scenarios RCP 2.6 and RCP 8.5 during the period 2010-2100, whereas it had a non-monotonic trend for the RCP 4.5 scenario, with a slow increase after the 2050s. Additionally, the future annual runoff clearly varied over a decadal time scale, indicating that it had clear divisions between dry and wet periods. The longest dry period was approximately 15 years (2040-2055) for the RCP 2.6 scenario and 25 years (2045-2070) for the RCP 4.5 scenario. However, the RCP 8.5 scenario was predicted to have a long dry period starting from 2045. Under these scenarios, the water resources situation of the study area will be extremely severe. Therefore, adaptive water management measures addressing climate change should be adopted to proactively confront the risks of water resources.