For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. A...For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved.展开更多
Much progress has been made in the development of automotive transmissions over the past 20 years,e.g.,an increased speed number,expanded ratio spread and improved efficiency and shift quality.Automotive transmissions...Much progress has been made in the development of automotive transmissions over the past 20 years,e.g.,an increased speed number,expanded ratio spread and improved efficiency and shift quality.Automotive transmissions are moving toward electrification in response to stringent legislation on emissions and the pressing demand for better fuel economy.This paper reviews progress in automotive transmission technology.Assisted by computer-aided programs,new transmission schemes are constantly being developed.We therefore first introduce the synthesis of the transmission scheme and parameter optimization.We then discuss the progress in the transmission technology of a conventional internal combustion engine vehicle in terms of new layouts;improved efficiency;noise,vibration and harshness technology;and the shifting strategy and control technology.As the major development trend,transmission electrification is subsequently discussed;this discussion includes the configuration design,energy management strategy,hybrid mode shifting control,single-speed and multi-speed electric vehicle transmission and distributed electric drive.Finally,a summary and outlook are presented for conventional automotive transmissions,hybrid transmissions and electric vehicle transmissions.展开更多
基金Supported by National Basic Research Program of China(973 Program,Grant No.2011CB711200)National Science and Technology Support Program of China(Grant No.2015BAG17B00)National Natural Science Foundation of China(Grant No.51475333)
文摘For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved.
基金the National Key R&D Program of China“Development and Vehicle Integration of Cost-effective Commercial Vehicle Hybrid System”(Grant No.2018YFB0105900).
文摘Much progress has been made in the development of automotive transmissions over the past 20 years,e.g.,an increased speed number,expanded ratio spread and improved efficiency and shift quality.Automotive transmissions are moving toward electrification in response to stringent legislation on emissions and the pressing demand for better fuel economy.This paper reviews progress in automotive transmission technology.Assisted by computer-aided programs,new transmission schemes are constantly being developed.We therefore first introduce the synthesis of the transmission scheme and parameter optimization.We then discuss the progress in the transmission technology of a conventional internal combustion engine vehicle in terms of new layouts;improved efficiency;noise,vibration and harshness technology;and the shifting strategy and control technology.As the major development trend,transmission electrification is subsequently discussed;this discussion includes the configuration design,energy management strategy,hybrid mode shifting control,single-speed and multi-speed electric vehicle transmission and distributed electric drive.Finally,a summary and outlook are presented for conventional automotive transmissions,hybrid transmissions and electric vehicle transmissions.