Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study pr...Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.展开更多
Fiber-optic distributed strain sensing(FO-DSS)has been successful in monitoring strain changes along horizontal wellbores in hydraulically fractured reservoirs.However,the mechanism driving the various FO-DSS response...Fiber-optic distributed strain sensing(FO-DSS)has been successful in monitoring strain changes along horizontal wellbores in hydraulically fractured reservoirs.However,the mechanism driving the various FO-DSS responses associated with near-wellbore hydraulic fracture properties is still unclear.To address this knowledge gap,we use coupled wellbore-reservoir-geomechanics simulations to study measured strain-change behavior and infer hydraulic fracture characteristics.The crossflow among fractures is captured through explicit modeling of the transient wellbore flow.In addition,local grid refinement is applied to accurately capture strain changes along the fiber.A Base Case model was designed with four fractures of varying properties,simulating strain change signals when the production well is shut-in for 10 d after 240 d of production and reopened for 2 d.Strain-pressure plots for different fracture clusters were used to gain insights into inferring fracture properties using DSS data.When comparing the model with and without the wellbore,distinct strain change signals were observed,emphasizing the importance of incorporating the wellbore in FO-DSS modeling.The effects of fracture spacing and matrix permeability on strain change signals were thoroughly investigated.The results of our numerical study can improve the understanding of the relation between DSS signals and fracture hydraulic properties,thus maximizing the value of the dataset for fracture diagnostics and characterization.展开更多
Distributed Acoustic Sensing(DAS) is an emerging technique for ultra-dense seismic observation, which provides a new method for high-resolution sub-surface seismic imaging. Recently a large number of linear DAS arrays...Distributed Acoustic Sensing(DAS) is an emerging technique for ultra-dense seismic observation, which provides a new method for high-resolution sub-surface seismic imaging. Recently a large number of linear DAS arrays have been used for two-dimensional S-wave near-surface imaging in urban areas. In order to explore the feasibility of three-dimensional(3D) structure imaging using a DAS array, we carried out an active source experiment at the Beijing National Earth Observatory. We deployed a 1 km optical cable in a rectangular shape, and the optical cable was recast into 250 sensors with a channel spacing of 4 m. The DAS array clearly recorded the P, S and surface waves generated by a hammer source. The first-arrival P wave travel times were first picked with a ShortTerm Average/Long-Term Average(STA/LTA) method and further manually checked. The P-wave signals recorded by the DAS are consistent with those recorded by the horizontal components of short-period seismometers. At shorter source-receiver distances, the picked P-wave arrivals from the DAS recording are consistent with vertical component recordings of seismometers, but they clearly lag behind the latter at greater distances.This is likely due to a combination of the signal-to-noise ratio and the polarization of the incoming wave. Then,we used the Tomo DD software to invert the 3D P-wave velocity structure for the uppermost 50 m with a resolution of 10 m. The inverted P-wave velocity structures agree well with the S-wave velocity structure previously obtained through ambient noise tomography. Our study indicates the feasibility of 3D near-surface imaging with the active source and DAS array. However, the inverted absolute velocity values at large depths may be biased due to potential time shifts between the DAS recording and seismometer at large source-receiver distances.展开更多
Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most o...Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior.展开更多
Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature ...Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications.展开更多
Compressed Sensing(CS)is a Machine Learning(ML)method,which can be regarded as a single-layer unsupervised learning method.It mainly emphasizes the sparsity of the model.In this paper,we study an ML-based CS Channel E...Compressed Sensing(CS)is a Machine Learning(ML)method,which can be regarded as a single-layer unsupervised learning method.It mainly emphasizes the sparsity of the model.In this paper,we study an ML-based CS Channel Estimation(CE)method for wireless communications,which plays an important role in Industrial Internet of Things(IIoT)applications.For the sparse correlation between channels in Multiple Input Multiple Output Filter Bank MultiCarrier with Offset Quadrature Amplitude Modulation(MIMO-FBMC/OQAM)systems,a Distributed Compressed Sensing(DCS)-based CE approach is studied.A distributed sparse adaptive weak selection threshold method is proposed for CE.Firstly,the correlation between MIMO channels is utilized to represent a joint sparse model,and CE is transformed into a joint sparse signal reconstruction problem.Then,the number of correlation atoms for inner product operation is optimized by weak selection threshold,and sparse signal reconstruction is realized by sparse adaptation.The experiment results show that the proposed DCS-based method not only estimates the multipath channel components accurately but also achieves higher CE performance than classical Orthogonal Matching Pursuit(OMP)method and other traditional DCS methods in the time-frequency dual selective channels.展开更多
With the development of multi-signal monitoring technology,the research on multiple signal analysis and processing has become a hot subject.Mechanical equipment often works under variable working conditions,and the ac...With the development of multi-signal monitoring technology,the research on multiple signal analysis and processing has become a hot subject.Mechanical equipment often works under variable working conditions,and the acquired vibration signals are often non-stationary and nonlinear,which are difficult to be processed by traditional analysis methods.In order to solve the noise reduction problem of multiple signals under variable speed,a COT-DCS method combining the Computed Order Tracking(COT)based on Chirplet Path Pursuit(CPP)and Distributed Compressed Sensing(DCS)is proposed.Firstly,the instantaneous frequency(IF)is extracted by CPP,and the speed is obtained by fitting.Then,the speed is used for equal angle sampling of time-domain signals,and angle-domain signals are obtained by COT without a tachometer to eliminate the nonstationarity,and the angledomain signals are compressed and reconstructed by DCS to achieve noise reduction of multiple signals.The accuracy of the CPP method is verified by simulated,experimental signals and compared with some existing IF extraction methods.The COT method also shows good signal stabilization ability through simulation and experiment.Finally,combined with the comparative test of the other two algorithms and four noise reduction effect indicators,the COT-DCS based on the CPP method combines the advantages of the two algorithms and has better noise reduction effect and stability.It is shown that this method is an effective multi-signal noise reduction method.展开更多
In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic senso...In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic sensors have a variety of exclusive advantages, such as smaller size, higher precision, and better corrosion resistance. These innovative monitoring technologies have been successfully applied for performance monitoring of geo-structures and early warning of potential geo- hazards around the world. In order to investigate their ability to monitor slope stability problems, a medium-sized model of soil nailed slope has been constructed in laboratory. The fully distributed Brillouin optical time-domain analysis (BOTDA) sensing technology was employed to measure the horizontal strain distributions inside the model slope. During model construction, a specially designed strain sensing fiber was buried in the soil mass. Afterward, the surcharge loading was applied on the slope crest in stages using hydraulic jacks and a reaction frame. During testing, an NBX-6o5o BOTDA sensing interrogator was used to collect the fiber optic sensing data. The test results have been analyzed in detail, which shows that the fiber optic sensors can capture the progressive deformation and failure pattern of the model slope. The limit equilibrium analyses were also conducted to obtain the factors ofsafety of the slope under different surface loadings. It is found that the characteristic maximum strains can reflect the stability of the model slope and an empirical relationship was obtained, This study verified the effectiveness of the distributed BOTDA sensing technology in performance monitoring of slope.展开更多
Distributed acoustic sensing(DAS) is one recently developed seismic acquisition technique that is based on fiber-optic sensing. DAS provides dense spatial spacing that is useful to image shallow structure with surface...Distributed acoustic sensing(DAS) is one recently developed seismic acquisition technique that is based on fiber-optic sensing. DAS provides dense spatial spacing that is useful to image shallow structure with surface waves.To test the feasibility of DAS in shallow structure imaging,the PoroTomo team conducted a DAS experiment with the vibroseis truck T-Rex in Brady’s Hot Springs, Nevada, USA.The Rayleigh waves excited by the vertical mode of the vibroseis truck were analyzed with the Multichannel Analysis of Surface Waves(MASW) method. Phase velocities between5 and 20 Hz were successfully extracted for one segment of cable and were employed to build a shear-wave velocity model for the top 50 meters. The dispersion curves obtained with DAS agree well with the ones extracted from co-located geophones data and from the passive source Noise Correlation Functions(NCF). Comparing to the co-located geophone array, the higher sensor density that DAS arrays provides help reducing aliasing in dispersion analysis, and separating different surface wave modes. This study demonstrates the feasibility and advantage of DAS in imaging shallow structure with surface waves.展开更多
Wireless Sensor Networks(WSN) are mainly characterized by a potentially large number of distributed sensor nodes which collectively transmit information about sensed events to the sink.In this paper,we present a Distr...Wireless Sensor Networks(WSN) are mainly characterized by a potentially large number of distributed sensor nodes which collectively transmit information about sensed events to the sink.In this paper,we present a Distributed Wavelet Basis Generation(DWBG) algorithm performing at the sink to obtain the distributed wavelet basis in WSN.And on this basis,a Wavelet Transform-based Distributed Compressed Sensing(WTDCS) algorithm is proposed to compress and reconstruct the sensed data with spatial correlation.Finally,we make a detailed analysis of relationship between reconstruction performance and WTDCS algorithm parameters such as the compression ratio,the channel Signal-to-Noise Ratio(SNR),the observation noise power and the correlation decay parameter by simulation.The simulation results show that WTDCS can achieve high performance in terms of energy and reconstruction accuracy,as compared to the conventional distributed wavelet transform algorithm.展开更多
At present, the demand for perimeter security system is in-creasing greatly, especially for such system based on distribut-ed optical fiber sensing. This paper proposes a perimeter se-curity monitoring system based on...At present, the demand for perimeter security system is in-creasing greatly, especially for such system based on distribut-ed optical fiber sensing. This paper proposes a perimeter se-curity monitoring system based on phase-sensitive coherentoptical time domain reflectometry(Ф-COTDR) with the practi-cal pattern recognition function. We use fast Fourier trans-form(FFT) to exact features from intrusion events and a multi-class classification algorithm derived from support vector ma-chine(SVM) to work as a pattern recognition technique. Fivedifferent types of events are classified by using a classifica-tion algorithm based on SVM through a three-dimensional fea-ture vector. Moreover, the identification results of the patternrecognition system show that an identification accurate rate of92.62% on average can be achieved.展开更多
This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumf...This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumferential strains are in agreement with the data monitored with the traditional strain gage.The DFOSS successfully scans the full-field view of axial and circumferential strains on the specimen surface.The spatiotemporal strain measurement based on DFOSS manifests crack closure and elastoplastic deformation,detects initialization of microcrack nucleation,and identifies strain localization within the specimen.The DFOSS well observes the effects of rock heterogeneity on rock deformation.The advantage of DFOSS-based strain acquisition includes the high spatiotemporal resolution of signals and the ability of full-surface strain scanning.The introduction to the DFOSS technology yields a better understanding of the rock damage process under uniaxial compression.展开更多
This paper advocates the use of the distributed compressed sensing(DCS)paradigm to deploy energy harvesting(EH)Internet of Thing(IoT)devices for energy self-sustainability.We consider networks with signal/energy model...This paper advocates the use of the distributed compressed sensing(DCS)paradigm to deploy energy harvesting(EH)Internet of Thing(IoT)devices for energy self-sustainability.We consider networks with signal/energy models that capture the fact that both the collected signals and the harvested energy of different devices can exhibit correlation.We provide theoretical analysis on the performance of both the classical compressive sensing(CS)approach and the proposed distributed CS(DCS)-based approach to data acquisition for EH IoT.Moreover,we perform an in-depth comparison of the proposed DCSbased approach against the distributed source coding(DSC)system.These performance characterizations and comparisons embody the effect of various system phenomena and parameters including signal correlation,EH correlation,network size,and energy availability level.Our results unveil that,the proposed approach offers significant increase in data gathering capability with respect to the CS-based approach,and offers a substantial reduction of the mean-squared error distortion with respect to the DSC system.展开更多
A sparse channel estimation method is proposed for doubly selective channels in multiple- input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems. Based on the basis expansion mo...A sparse channel estimation method is proposed for doubly selective channels in multiple- input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems. Based on the basis expansion model (BEM) of the channel, the joint-sparsity of MIMO-OFDM channels is described. The sparse characteristics enable us to cast the channel estimation as a distributed compressed sensing (DCS) problem. Then, a low complexity DCS-based estimation scheme is designed. Compared with the conventional compressed channel estimators based on the compressed sensing (CS) theory, the DCS-based method has an improved efficiency because it reconstructs the MIMO channels jointly rather than addresses them separately. Furthermore, the group-sparse structure of each single channel is also depicted. To effectively use this additional structure of the sparsity pattern, the DCS algorithm is modified. The modified algorithm can further enhance the estimation performance. Simulation results demonstrate the superiority of our method over fast fading channels in MIMO-OFDM systems.展开更多
Multicore fiber(MCF)which contains more than one core in a single fiber cladding has attracted ever increasing attention for application in optical sensing systems owing to its unique capability of independent light t...Multicore fiber(MCF)which contains more than one core in a single fiber cladding has attracted ever increasing attention for application in optical sensing systems owing to its unique capability of independent light transmission in multiple spatial channels.Different from the situation in standard single mode fiber(SMF),the fiber bending gives rise to tangential strain in off-center cores,and this unique feature has been employed for directional bending and shape sensing,where strain measurement is achieved by using either fiber Bragg gratings(FBGs),optical frequency-domain reflectometry(OFDR)or Brillouin distributed sensing technique.On the other hand,the parallel spatial cores enable space-division multiplexed(SDM)system configuration that allows for the multiplexing of multiple distributed sensing techniques.As a result,multi-parameter sensing or performance enhanced sensing can be achieved by using MCF.In this paper,we review the research progress in MCF based distributed fiber sensors.Brief introductions of MCF and the multiplexing/de-multiplexing methods are presented.The bending sensitivity of off-center cores is analyzed.Curvature and shape sensing,as well as various SDM distributed sensing using MCF are summarized,and the working principles of diverse MCF sensors are discussed.Finally,we present the challenges and prospects of MCF for distributed sensing applications.展开更多
A novel nonlinear mirror structure which can increase the optical signal-to-noise ratio of a distributed fiber Raman temperature sensor is proposed, and 6 dB improvement of the optical signal-to-noise ratio is obtaine...A novel nonlinear mirror structure which can increase the optical signal-to-noise ratio of a distributed fiber Raman temperature sensor is proposed, and 6 dB improvement of the optical signal-to-noise ratio is obtained. With the assistance of the nonlinear mirror, we demonstrate that the spatial resolution of the sensor is improved from 3 m to 1 m, and the temperature accuracy is improved from ±0.6℃ to ±0.2℃. The theoretical analysis and the experimental data are in good agreement.展开更多
A new iterative greedy algorithm based on the backtracking technique was proposed for distributed compressed sensing(DCS) problem. The algorithm applies two mechanisms for precise recovery soft thresholding and cuttin...A new iterative greedy algorithm based on the backtracking technique was proposed for distributed compressed sensing(DCS) problem. The algorithm applies two mechanisms for precise recovery soft thresholding and cutting. It can reconstruct several compressed signals simultaneously even without any prior information of the sparsity, which makes it a potential candidate for many practical applications, but the numbers of non-zero(significant) coefficients of signals are not available. Numerical experiments are conducted to demonstrate the validity and high performance of the proposed algorithm, as compared to other existing strong DCS algorithms.展开更多
Compressed sensing,a new area of signal processing rising in recent years,seeks to minimize the number of samples that is necessary to be taken from a signal for precise reconstruction.The precondition of compressed s...Compressed sensing,a new area of signal processing rising in recent years,seeks to minimize the number of samples that is necessary to be taken from a signal for precise reconstruction.The precondition of compressed sensing theory is the sparsity of signals.In this paper,two methods to estimate the sparsity level of the signal are formulated.And then an approach to estimate the sparsity level directly from the noisy signal is presented.Moreover,a scheme based on distributed compressed sensing for speech signal denoising is described in this work which exploits multiple measurements of the noisy speech signal to construct the block-sparse data and then reconstruct the original speech signal using block-sparse model-based Compressive Sampling Matching Pursuit(CoSaMP) algorithm.Several simulation results demonstrate the accuracy of the estimated sparsity level and that this de-noising system for noisy speech signals can achieve favorable performance especially when speech signals suffer severe noise.展开更多
In this paper, we present a simple and fast spectra inversion method to reconstruct the temperature distribution along single fiber Bragg grating (FBC) temperature sensor. This is a fully distributed sensing method ...In this paper, we present a simple and fast spectra inversion method to reconstruct the temperature distribution along single fiber Bragg grating (FBC) temperature sensor. This is a fully distributed sensing method based on the simulated annealing evolutionary (SAE) algorithm. Several modifications are made to improve the algorithm efficiency, including choosing the most superior chromosome, setting up the boundary of every gene according to the density of resonance peaks of the reflection spectrum, and dynamically modifying the boundary with the algorithm running. Numerical simulation results show that both the convergence rate and the fluctuation are significantly improved. A high spat-ial temperature resolution of 0.25 mm has been achieved at the time cost of 86 s.展开更多
Distributed fiber sensors based on forward stimulated Brillouin scattering(F-SBS)have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber.However,t...Distributed fiber sensors based on forward stimulated Brillouin scattering(F-SBS)have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber.However,the reported results were based on the extraction of a 1st-order local spectrum,causing the sensing distance to be restricted by pump depletion.Here,a novel post-processing technique was proposed for distributed acoustic impedance sensing by extracting the 2nd-order local spectrum,which is beneficial for improving the sensing signal-to-noise ratio(SNR)significantly,since its pulse energy penetrates into the fiber more deeply.As a proof-of-concept,distributed acoustic impedance sensing along~1630 m fiber under moderate spatial resolution of~20 m was demonstrated.展开更多
基金funding support from Rijkswaterstaat,the Netherlands,and European Union’s Horizon 2020 Research and Innovation Programme(Project SAFE-10-T under Grant No.723254)China Scholarship Council,and National Natural Science Foundation of China(Grant No.42225702).
文摘Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.
基金funding support from the National Natural Science Foundation of China(Grant No.52204030)Youth Innovation and Technology Support Program for Higher Education Institutions of Shandong Province,China(Grant No.2022KJ070)the National Natural Science Foundation of China Enterprise Innovation and Development Joint Fund Project(Grant No.U19B6003).
文摘Fiber-optic distributed strain sensing(FO-DSS)has been successful in monitoring strain changes along horizontal wellbores in hydraulically fractured reservoirs.However,the mechanism driving the various FO-DSS responses associated with near-wellbore hydraulic fracture properties is still unclear.To address this knowledge gap,we use coupled wellbore-reservoir-geomechanics simulations to study measured strain-change behavior and infer hydraulic fracture characteristics.The crossflow among fractures is captured through explicit modeling of the transient wellbore flow.In addition,local grid refinement is applied to accurately capture strain changes along the fiber.A Base Case model was designed with four fractures of varying properties,simulating strain change signals when the production well is shut-in for 10 d after 240 d of production and reopened for 2 d.Strain-pressure plots for different fracture clusters were used to gain insights into inferring fracture properties using DSS data.When comparing the model with and without the wellbore,distinct strain change signals were observed,emphasizing the importance of incorporating the wellbore in FO-DSS modeling.The effects of fracture spacing and matrix permeability on strain change signals were thoroughly investigated.The results of our numerical study can improve the understanding of the relation between DSS signals and fracture hydraulic properties,thus maximizing the value of the dataset for fracture diagnostics and characterization.
基金supported by the National Key R&D Program of China(2022YFC3102202)the Chinese Academy of Sciences (CAS) Project for Young Scientists in Basic Research (YSBR-020)。
文摘Distributed Acoustic Sensing(DAS) is an emerging technique for ultra-dense seismic observation, which provides a new method for high-resolution sub-surface seismic imaging. Recently a large number of linear DAS arrays have been used for two-dimensional S-wave near-surface imaging in urban areas. In order to explore the feasibility of three-dimensional(3D) structure imaging using a DAS array, we carried out an active source experiment at the Beijing National Earth Observatory. We deployed a 1 km optical cable in a rectangular shape, and the optical cable was recast into 250 sensors with a channel spacing of 4 m. The DAS array clearly recorded the P, S and surface waves generated by a hammer source. The first-arrival P wave travel times were first picked with a ShortTerm Average/Long-Term Average(STA/LTA) method and further manually checked. The P-wave signals recorded by the DAS are consistent with those recorded by the horizontal components of short-period seismometers. At shorter source-receiver distances, the picked P-wave arrivals from the DAS recording are consistent with vertical component recordings of seismometers, but they clearly lag behind the latter at greater distances.This is likely due to a combination of the signal-to-noise ratio and the polarization of the incoming wave. Then,we used the Tomo DD software to invert the 3D P-wave velocity structure for the uppermost 50 m with a resolution of 10 m. The inverted P-wave velocity structures agree well with the S-wave velocity structure previously obtained through ambient noise tomography. Our study indicates the feasibility of 3D near-surface imaging with the active source and DAS array. However, the inverted absolute velocity values at large depths may be biased due to potential time shifts between the DAS recording and seismometer at large source-receiver distances.
基金funding support from the Israeli Ministry of Housing and Construction(Grant No.2028286).
文摘Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior.
基金The authors grate fully acknowledge the financial support provided by the National Natural Science Foundation of China(Grant Nos.42225702 and 42077235)the Open Research Project Program of the State Key Laboratory of Internet of Things for Smart City(University of Macao),China(Grant No.SKUoTSC(UM)-2021-2023/0RP/GA10/2022).
文摘Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications.
基金supported by National Natural Science Foundation of China under Grant Nos.61901409 and 61961013Jiangxi Provincial Natural Science Foundation under Grant No.20202BABL212001Open Project of State Key Laboratory of Marine Resources Utilization in South China Sea under Grant No.MRUKF2021034.
文摘Compressed Sensing(CS)is a Machine Learning(ML)method,which can be regarded as a single-layer unsupervised learning method.It mainly emphasizes the sparsity of the model.In this paper,we study an ML-based CS Channel Estimation(CE)method for wireless communications,which plays an important role in Industrial Internet of Things(IIoT)applications.For the sparse correlation between channels in Multiple Input Multiple Output Filter Bank MultiCarrier with Offset Quadrature Amplitude Modulation(MIMO-FBMC/OQAM)systems,a Distributed Compressed Sensing(DCS)-based CE approach is studied.A distributed sparse adaptive weak selection threshold method is proposed for CE.Firstly,the correlation between MIMO channels is utilized to represent a joint sparse model,and CE is transformed into a joint sparse signal reconstruction problem.Then,the number of correlation atoms for inner product operation is optimized by weak selection threshold,and sparse signal reconstruction is realized by sparse adaptation.The experiment results show that the proposed DCS-based method not only estimates the multipath channel components accurately but also achieves higher CE performance than classical Orthogonal Matching Pursuit(OMP)method and other traditional DCS methods in the time-frequency dual selective channels.
基金the financial support of this work by the National Natural Science Foundation of Hebei Province China under Grant E2020208052.
文摘With the development of multi-signal monitoring technology,the research on multiple signal analysis and processing has become a hot subject.Mechanical equipment often works under variable working conditions,and the acquired vibration signals are often non-stationary and nonlinear,which are difficult to be processed by traditional analysis methods.In order to solve the noise reduction problem of multiple signals under variable speed,a COT-DCS method combining the Computed Order Tracking(COT)based on Chirplet Path Pursuit(CPP)and Distributed Compressed Sensing(DCS)is proposed.Firstly,the instantaneous frequency(IF)is extracted by CPP,and the speed is obtained by fitting.Then,the speed is used for equal angle sampling of time-domain signals,and angle-domain signals are obtained by COT without a tachometer to eliminate the nonstationarity,and the angledomain signals are compressed and reconstructed by DCS to achieve noise reduction of multiple signals.The accuracy of the CPP method is verified by simulated,experimental signals and compared with some existing IF extraction methods.The COT method also shows good signal stabilization ability through simulation and experiment.Finally,combined with the comparative test of the other two algorithms and four noise reduction effect indicators,the COT-DCS based on the CPP method combines the advantages of the two algorithms and has better noise reduction effect and stability.It is shown that this method is an effective multi-signal noise reduction method.
基金the financial support provided by the National Basic Research Program of China (973 Program) (Grant No. 2011CB710605)the National Natural Science Foundation of China (Grant Nos. 41102174, 41302217)supported by the National Key Technology R&D Program of China (Grant No. 2012BAK10B05)
文摘In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic sensors have a variety of exclusive advantages, such as smaller size, higher precision, and better corrosion resistance. These innovative monitoring technologies have been successfully applied for performance monitoring of geo-structures and early warning of potential geo- hazards around the world. In order to investigate their ability to monitor slope stability problems, a medium-sized model of soil nailed slope has been constructed in laboratory. The fully distributed Brillouin optical time-domain analysis (BOTDA) sensing technology was employed to measure the horizontal strain distributions inside the model slope. During model construction, a specially designed strain sensing fiber was buried in the soil mass. Afterward, the surcharge loading was applied on the slope crest in stages using hydraulic jacks and a reaction frame. During testing, an NBX-6o5o BOTDA sensing interrogator was used to collect the fiber optic sensing data. The test results have been analyzed in detail, which shows that the fiber optic sensors can capture the progressive deformation and failure pattern of the model slope. The limit equilibrium analyses were also conducted to obtain the factors ofsafety of the slope under different surface loadings. It is found that the characteristic maximum strains can reflect the stability of the model slope and an empirical relationship was obtained, This study verified the effectiveness of the distributed BOTDA sensing technology in performance monitoring of slope.
基金partially supported by the Geothermal Technologies Office of the USA Department of Energy (No. DE-EE0006760)the State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodey and Geophysics, Chinese Academy of Sciences (No. SKLGED2019-5-4-E)
文摘Distributed acoustic sensing(DAS) is one recently developed seismic acquisition technique that is based on fiber-optic sensing. DAS provides dense spatial spacing that is useful to image shallow structure with surface waves.To test the feasibility of DAS in shallow structure imaging,the PoroTomo team conducted a DAS experiment with the vibroseis truck T-Rex in Brady’s Hot Springs, Nevada, USA.The Rayleigh waves excited by the vertical mode of the vibroseis truck were analyzed with the Multichannel Analysis of Surface Waves(MASW) method. Phase velocities between5 and 20 Hz were successfully extracted for one segment of cable and were employed to build a shear-wave velocity model for the top 50 meters. The dispersion curves obtained with DAS agree well with the ones extracted from co-located geophones data and from the passive source Noise Correlation Functions(NCF). Comparing to the co-located geophone array, the higher sensor density that DAS arrays provides help reducing aliasing in dispersion analysis, and separating different surface wave modes. This study demonstrates the feasibility and advantage of DAS in imaging shallow structure with surface waves.
基金the National Basic Research Program of China,the National Natural Science Foundation of China,the open research fund of National Mobile Communications Research Laboratory,Southeast University,the Postdoctoral Science Foundation of Jiangsu Province,the University Natural Science Research Program of Jiangsu Province,the Basic Research Program of Jiangsu Province (Natural Science Foundation)
文摘Wireless Sensor Networks(WSN) are mainly characterized by a potentially large number of distributed sensor nodes which collectively transmit information about sensed events to the sink.In this paper,we present a Distributed Wavelet Basis Generation(DWBG) algorithm performing at the sink to obtain the distributed wavelet basis in WSN.And on this basis,a Wavelet Transform-based Distributed Compressed Sensing(WTDCS) algorithm is proposed to compress and reconstruct the sensed data with spatial correlation.Finally,we make a detailed analysis of relationship between reconstruction performance and WTDCS algorithm parameters such as the compression ratio,the channel Signal-to-Noise Ratio(SNR),the observation noise power and the correlation decay parameter by simulation.The simulation results show that WTDCS can achieve high performance in terms of energy and reconstruction accuracy,as compared to the conventional distributed wavelet transform algorithm.
文摘At present, the demand for perimeter security system is in-creasing greatly, especially for such system based on distribut-ed optical fiber sensing. This paper proposes a perimeter se-curity monitoring system based on phase-sensitive coherentoptical time domain reflectometry(Ф-COTDR) with the practi-cal pattern recognition function. We use fast Fourier trans-form(FFT) to exact features from intrusion events and a multi-class classification algorithm derived from support vector ma-chine(SVM) to work as a pattern recognition technique. Fivedifferent types of events are classified by using a classifica-tion algorithm based on SVM through a three-dimensional fea-ture vector. Moreover, the identification results of the patternrecognition system show that an identification accurate rate of92.62% on average can be achieved.
基金support from the Institute of Crustal Dynamics,China Earthquake Administration(Grant No.ZDJ2016-20 and ZDJ2019-15)。
文摘This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumferential strains are in agreement with the data monitored with the traditional strain gage.The DFOSS successfully scans the full-field view of axial and circumferential strains on the specimen surface.The spatiotemporal strain measurement based on DFOSS manifests crack closure and elastoplastic deformation,detects initialization of microcrack nucleation,and identifies strain localization within the specimen.The DFOSS well observes the effects of rock heterogeneity on rock deformation.The advantage of DFOSS-based strain acquisition includes the high spatiotemporal resolution of signals and the ability of full-surface strain scanning.The introduction to the DFOSS technology yields a better understanding of the rock damage process under uniaxial compression.
基金This work has been supported by the National Key R&D Program of China(Grant No.2018YFE0207600)EPSRC Research Grant(EP/K033700/1,EP/K033166/1)+2 种基金the Natural Science Foundation of China(61671046,61911530216,U1834210)the Beijing Natural Science Foundation(4182050)the FWO(Grants G0A2617N and G093817N).
文摘This paper advocates the use of the distributed compressed sensing(DCS)paradigm to deploy energy harvesting(EH)Internet of Thing(IoT)devices for energy self-sustainability.We consider networks with signal/energy models that capture the fact that both the collected signals and the harvested energy of different devices can exhibit correlation.We provide theoretical analysis on the performance of both the classical compressive sensing(CS)approach and the proposed distributed CS(DCS)-based approach to data acquisition for EH IoT.Moreover,we perform an in-depth comparison of the proposed DCSbased approach against the distributed source coding(DSC)system.These performance characterizations and comparisons embody the effect of various system phenomena and parameters including signal correlation,EH correlation,network size,and energy availability level.Our results unveil that,the proposed approach offers significant increase in data gathering capability with respect to the CS-based approach,and offers a substantial reduction of the mean-squared error distortion with respect to the DSC system.
基金Supported by the National Natural Science Foundation of China(61077022)
文摘A sparse channel estimation method is proposed for doubly selective channels in multiple- input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems. Based on the basis expansion model (BEM) of the channel, the joint-sparsity of MIMO-OFDM channels is described. The sparse characteristics enable us to cast the channel estimation as a distributed compressed sensing (DCS) problem. Then, a low complexity DCS-based estimation scheme is designed. Compared with the conventional compressed channel estimators based on the compressed sensing (CS) theory, the DCS-based method has an improved efficiency because it reconstructs the MIMO channels jointly rather than addresses them separately. Furthermore, the group-sparse structure of each single channel is also depicted. To effectively use this additional structure of the sparsity pattern, the DCS algorithm is modified. The modified algorithm can further enhance the estimation performance. Simulation results demonstrate the superiority of our method over fast fading channels in MIMO-OFDM systems.
文摘Multicore fiber(MCF)which contains more than one core in a single fiber cladding has attracted ever increasing attention for application in optical sensing systems owing to its unique capability of independent light transmission in multiple spatial channels.Different from the situation in standard single mode fiber(SMF),the fiber bending gives rise to tangential strain in off-center cores,and this unique feature has been employed for directional bending and shape sensing,where strain measurement is achieved by using either fiber Bragg gratings(FBGs),optical frequency-domain reflectometry(OFDR)or Brillouin distributed sensing technique.On the other hand,the parallel spatial cores enable space-division multiplexed(SDM)system configuration that allows for the multiplexing of multiple distributed sensing techniques.As a result,multi-parameter sensing or performance enhanced sensing can be achieved by using MCF.In this paper,we review the research progress in MCF based distributed fiber sensors.Brief introductions of MCF and the multiplexing/de-multiplexing methods are presented.The bending sensitivity of off-center cores is analyzed.Curvature and shape sensing,as well as various SDM distributed sensing using MCF are summarized,and the working principles of diverse MCF sensors are discussed.Finally,we present the challenges and prospects of MCF for distributed sensing applications.
基金supported by the National Natural Science Foundation of China under Grant No.60377021partially supported by Program for New Century Excellent Talents in University under Grant No. NCET-07-0152Sichuan Scientific Funds for Young Researchers under Grant No. 08ZQ026-012.
文摘A novel nonlinear mirror structure which can increase the optical signal-to-noise ratio of a distributed fiber Raman temperature sensor is proposed, and 6 dB improvement of the optical signal-to-noise ratio is obtained. With the assistance of the nonlinear mirror, we demonstrate that the spatial resolution of the sensor is improved from 3 m to 1 m, and the temperature accuracy is improved from ±0.6℃ to ±0.2℃. The theoretical analysis and the experimental data are in good agreement.
基金Projects(61203287,61302138,11126274)supported by the National Natural Science Foundation of ChinaProject(2013CFB414)supported by Natural Science Foundation of Hubei Province,ChinaProject(CUGL130247)supported by the Special Fund for Basic Scientific Research of Central Colleges of China University of Geosciences
文摘A new iterative greedy algorithm based on the backtracking technique was proposed for distributed compressed sensing(DCS) problem. The algorithm applies two mechanisms for precise recovery soft thresholding and cutting. It can reconstruct several compressed signals simultaneously even without any prior information of the sparsity, which makes it a potential candidate for many practical applications, but the numbers of non-zero(significant) coefficients of signals are not available. Numerical experiments are conducted to demonstrate the validity and high performance of the proposed algorithm, as compared to other existing strong DCS algorithms.
基金Supported by the National Natural Science Foundation of China (No. 60971129)the National Research Program of China (973 Program) (No. 2011CB302303)the Scientific Innovation Research Program of College Graduate in Jiangsu Province (No. CXLX11_0408)
文摘Compressed sensing,a new area of signal processing rising in recent years,seeks to minimize the number of samples that is necessary to be taken from a signal for precise reconstruction.The precondition of compressed sensing theory is the sparsity of signals.In this paper,two methods to estimate the sparsity level of the signal are formulated.And then an approach to estimate the sparsity level directly from the noisy signal is presented.Moreover,a scheme based on distributed compressed sensing for speech signal denoising is described in this work which exploits multiple measurements of the noisy speech signal to construct the block-sparse data and then reconstruct the original speech signal using block-sparse model-based Compressive Sampling Matching Pursuit(CoSaMP) algorithm.Several simulation results demonstrate the accuracy of the estimated sparsity level and that this de-noising system for noisy speech signals can achieve favorable performance especially when speech signals suffer severe noise.
基金Project supported by the Development Foundation of the Education Commission of Shanghai Municipality (Grant No.2008CG47)the Cultivation Foundation of the Key Scientific and Technical Innovation Project (Grant No.708041)+2 种基金the Research Foundation for the Doctoral Program of Higher Education Ministry of Education of China (Grant No.20093108120017)the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Natural Science Foundation of Shanghai Municipality (Grant No.09ZR1412200)
文摘In this paper, we present a simple and fast spectra inversion method to reconstruct the temperature distribution along single fiber Bragg grating (FBC) temperature sensor. This is a fully distributed sensing method based on the simulated annealing evolutionary (SAE) algorithm. Several modifications are made to improve the algorithm efficiency, including choosing the most superior chromosome, setting up the boundary of every gene according to the density of resonance peaks of the reflection spectrum, and dynamically modifying the boundary with the algorithm running. Numerical simulation results show that both the convergence rate and the fluctuation are significantly improved. A high spat-ial temperature resolution of 0.25 mm has been achieved at the time cost of 86 s.
基金Project supported by the Sichuan Science and Technology Program(Grant No.2019YJ0530)Scientific Research Fund of Sichuan Provincial Education Department,China(Grant No.18ZA0401)the National Natural Science Foundation of China(Grant No.61205079).
文摘Distributed fiber sensors based on forward stimulated Brillouin scattering(F-SBS)have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber.However,the reported results were based on the extraction of a 1st-order local spectrum,causing the sensing distance to be restricted by pump depletion.Here,a novel post-processing technique was proposed for distributed acoustic impedance sensing by extracting the 2nd-order local spectrum,which is beneficial for improving the sensing signal-to-noise ratio(SNR)significantly,since its pulse energy penetrates into the fiber more deeply.As a proof-of-concept,distributed acoustic impedance sensing along~1630 m fiber under moderate spatial resolution of~20 m was demonstrated.