The single planar routing protocol has a slow convergence rate in the large-scale Wireless Sensor Network(WSN).Although the hierarchical routing protocol can effectively cope with large-scale application scenarios,how...The single planar routing protocol has a slow convergence rate in the large-scale Wireless Sensor Network(WSN).Although the hierarchical routing protocol can effectively cope with large-scale application scenarios,how to elect a secure cluster head and balance the network load becomes an enormous challenge.In this paper,a Trust Management-based and Low Energy Adaptive Clustering Hierarchy protocol(LEACH-TM)is proposed.In LEACH-TM,by using the number of dynamic decision cluster head nodes,residual energy and density of neighbor nodes,the size of the cluster can be better constrained to improve energy efficiency,and avoid excessive energy consumption of a node.Simultaneously,the trust management scheme is introduced into LEACH-TM to defend against internal attacks.The simulation results show that,compared with LEACH-SWDN protocol and LEACH protocol,LEACH-TM outperforms in prolonging the network lifetime and balancing the energy consumption,and can effectively mitigate the influence of malicious nodes on cluster head selection,which can greatiy guarantee the security of the overall network.展开更多
Wireless sensor networks are open architectures, so any potential threat can easily intercept, wiretap and counterfeit the information. Therefore, the safety of WSN is very important. Since any single key system canno...Wireless sensor networks are open architectures, so any potential threat can easily intercept, wiretap and counterfeit the information. Therefore, the safety of WSN is very important. Since any single key system cannot guarantee the security of the wireless sensor network for communications, this paper introduces a hierarchical key management scheme based on the different abilities of different sensor nodes in the clustered wireless sensor network. In this scheme, the nodes are distributed into several clusters, and a cluster head must be elected for each cluster. Private communication between cluster heads is realized through the encryption system based on the identity of each head while private communication between cluster nodes in a same cluster head is achieved through the random key preliminary distribution system. Considering the characteristics of WSN, we adopt dynamic means called dynamic cluster key management scheme to deal with master key, so master key will be updated according to the changed dynamic network topology. For cluster head node plays a pivotal role in this scheme, a trust manage-ment system should be introduced into the election of the cluster head which will exclude the malicious node from outside the cluster, thus improve the whole network security.展开更多
Underwater acoustic sensor networks (UASNs) are often used for environmental and industrial sensing in undersea/ocean space, therefore, these networks are also named underwater wireless sensor networks (UWSNs). Underw...Underwater acoustic sensor networks (UASNs) are often used for environmental and industrial sensing in undersea/ocean space, therefore, these networks are also named underwater wireless sensor networks (UWSNs). Underwater sensor networks are different from other sensor networks due to the acoustic channel used in their physical layer, thus we should discuss about the specific features of these underwater networks such as acoustic channel modeling and protocol design for different layers of open system interconnection (OSI) model. Each node of these networks as a sensor needs to exchange data with other nodes;however, complexity of the acoustic channel makes some challenges in practice, especially when we are designing the network protocols. Therefore based on the mentioned cases, we are going to review general issues of the design of an UASN in this paper. In this regard, we firstly describe the network architecture for a typical 3D UASN, then we review the characteristics of the acoustic channel and the corresponding challenges of it and finally, we discuss about the different layers e.g. MAC protocols, routing protocols, and signal processing for the application layer of UASNs.展开更多
Recent advancements in wireless communication and microchip techniques have accelerated the development of wireless sensor networks (WSN). Key management in WSN is a critical and challenging problem because of the inn...Recent advancements in wireless communication and microchip techniques have accelerated the development of wireless sensor networks (WSN). Key management in WSN is a critical and challenging problem because of the inner characteristics of sensor networks: deployed in hostile environments, limited resource and ad hoc nature. This paper investigates the constraints and special requirements of key management in sensor network environment, and some basic evaluation metrics are introduced. The key pre-distribution scheme is thought as the most suitable solution for key management problem in wireless sensor networks. It can be classified into four classes: pure probabilistic key pre-distribution, polynomial-based, Blom's matrix-based, and deterministic key pre-distribution schemes. In each class of methods, the related research papers are discussed based on the basic evaluation metrics. Finally, the possible research directions in key management are discussed.展开更多
To design an energy-efficient Medium Access Control(MAC)protocol for the Underwater Wireless Sensor Networks(UWSNs)is an urgent research issue since depleted batteries cannot be recharged or replaced in the underwater...To design an energy-efficient Medium Access Control(MAC)protocol for the Underwater Wireless Sensor Networks(UWSNs)is an urgent research issue since depleted batteries cannot be recharged or replaced in the underwater environment.Moreover,the underwater acoustic channels are affected by hindrances such as long propagation delay and limited bandwidth,which appear in the design of the MAC protocol for the UWSNs.The available MAC protocols for the terrestrial wireless sensor networks exhibit low performance in energy efficiency,throughput and reliability in the UWSNs,and cannot be used in the UWSNs directly because of their unique characteristics.This paper proposes a synchronous duty-cycled reservation-based MAC protocol named Ordered Contention MAC(OCMAC)protocol.The basic mechanism of this protocol is to schedule data transmission by transmitters through the scheduling of Ready To Send(RTS)frames.The protocol eliminates the possible collision during data transmission and improves communication efficiency.The paper analyzes the performance in energy efficiency,throughput and reliability of the protocol by modeling the queuing behavior of OCMAC with a Markov Chain process.Furthermore,the analytical model is validated through a simulation study.The analysis results demonstrated that while providing good throughput and reliability,OCMAC can achieve energy saving.展开更多
Wireless sensor networks (WSNs) attract considerable amount of research efforts from both industry and academia. With limited power and computational capability available on a sensor node, robustness and efficiency ar...Wireless sensor networks (WSNs) attract considerable amount of research efforts from both industry and academia. With limited power and computational capability available on a sensor node, robustness and efficiency are the main concerns when designing a routing protocol for WSNs with low complexity. There are various existing design approaches, such as data-centric approach, hierarchical approach and location-based approach, which were designed for a particular application with specific requirements. In this paper, we study the design and implementation of a routing protocol for data acquisition in WSNs. The designed routing protocol is named Centralized Sensor Protocol for Information via Negotiation (CSPIN), which essentially combines the advertise-request-transfer process and a routing distribution mechanism. Implementation is realized and demonstrated with the Crossbow MicaZ hardware using nesC/TinyOS. It was our intention to provide a hand-on study of implementation of centralized routing protocol for WSNs.展开更多
Wireless sensor network(WSN)is considered as the fastest growing technology pattern in recent years because of its applicability in varied domains.Many sensor nodes with different sensing functionalities are deployed ...Wireless sensor network(WSN)is considered as the fastest growing technology pattern in recent years because of its applicability in varied domains.Many sensor nodes with different sensing functionalities are deployed in the monitoring area to collect suitable data and transmit it to the gateway.Ensuring communications in heterogeneous WSNs,is a critical issue that needs to be studied.In this research paper,we study the system performance of a heterogeneous WSN using LoRa–Zigbee hybrid communication.Specifically,two Zigbee sensor clusters and two LoRa sensor clusters are used and combined with two Zigbee-to-LoRa converters to communicate in a network managed by a LoRa gateway.The overall system integrates many different sensors in terms of types,communication protocols,and accuracy,which can be used in many applications in realistic environments such as on land,under water,or in the air.In addition to this,a synchronous management software on ThingSpeak Web server and Blynk app is designed.In the proposed system,the token ring protocol in Zigbee network and polling mechanism in LoRa network is used.The system can operate with a packet loss rate of less than 0.5%when the communication range of the Zigbee network is 630 m,and the communication range of the LoRa network is 3.7 km.On the basis of the digital results collected on the management software,this study proves tremendous improvements in the system performance.展开更多
The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(...The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(IPv6)in the IoT.However,RPL is vulnerable to various attacks,including the sinkhole attack,which disrupts the network by manipulating routing information.This paper proposes the Unweighted Voting Method(UVM)for sinkhole node identification,utilizing three key behavioral indicators:DODAG Information Object(DIO)Transaction Frequency,Rank Harmony,and Power Consumption.These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant features used in previous research.The UVM method employs an unweighted voting mechanism,where each voter or rule holds equal weight in detecting the presence of a sinkhole attack based on the proposed indicators.The effectiveness of the UVM method is evaluated using the COOJA simulator and compared with existing approaches.Notably,the proposed approach fulfills power consumption requirements for constrained nodes without increasing consumption due to the deployment design.In terms of detection accuracy,simulation results demonstrate a high detection rate ranging from 90%to 100%,with a low false-positive rate of 0%to 0.2%.Consequently,the proposed approach surpasses Ensemble Learning Intrusion Detection Systems by leveraging three indicators and three supporting rules.展开更多
Nowadays,wireless sensor networks play a vital role in our day to day life.Wireless communication is preferred for many sensing applications due its convenience,flexibility and effectiveness.The sensors to sense the en...Nowadays,wireless sensor networks play a vital role in our day to day life.Wireless communication is preferred for many sensing applications due its convenience,flexibility and effectiveness.The sensors to sense the environmental factor are versatile and send sensed data to central station wirelessly.The cluster based protocols are provided an optimal solution for enhancing the lifetime of the sensor networks.In this paper,modified K-means++algorithm is used to form the cluster and cluster head in an efficient way and the Advanced Energy-Efficient Cluster head selection Algorithm(AEECA)is used to calculate the weighted fac-tor of the transmission path and effective data collection using gateway node.The experimental results show the proposed algorithm outperforms the existing routing algorithms.展开更多
A Wireless Sensor Network (WSN) consists of a large number of randomly deployed sensor nodes. These sensor nodes organize themselves into a cooperative network and perform the three basic functions of sensing, computa...A Wireless Sensor Network (WSN) consists of a large number of randomly deployed sensor nodes. These sensor nodes organize themselves into a cooperative network and perform the three basic functions of sensing, computations and communications. Research in WSNs has become an extensive explorative area during the last few years, especially due to the challenges offered, energy constraints of the sensors being one of them. In this paper, a thorough comprehensive study of the energy conservation challenges in wireless sensor networks is carried out. The need for effective utilization of limited power resources is also emphasized, which becomes pre-eminent to the Wireless Sensor Networks.展开更多
Several protocols and schemes have been proposed to reduce energy consumption in Wireless Sensor Net-works (WSNs). In this paper we employ farcoopt, a cross layer design approach with the concept of coop-eration among...Several protocols and schemes have been proposed to reduce energy consumption in Wireless Sensor Net-works (WSNs). In this paper we employ farcoopt, a cross layer design approach with the concept of coop-eration among the nodes with best farthest neighbor scheme to increase the Quality of Service (QoS), reduce energy consumption, increases performance and end-to-end throughput. We present cooperative transmission to connect previously disconnect parts of a network thus overcoming the separation problem of multi-hop network. We show that this approach improves connectivity over 50% compared to multi-hop approaches and reduces the number of nodes necessary to provide full coverage of an area up to 35%. Simulation results show that on increase of data rates i.e. packet the network life time increases in farcoopt as compared to tra-ditional multi hop approach. The result of this analysis is presented in this work.展开更多
Coverage holes often appear in wireless sensor networks due to sensor failure or the inheritance of sensor's random distribution. In the hybrid model, mobile sensors in the network are acquired to heal coverage holes...Coverage holes often appear in wireless sensor networks due to sensor failure or the inheritance of sensor's random distribution. In the hybrid model, mobile sensors in the network are acquired to heal coverage holes by their mobifity. When multiple coverage holes appear in the sensor network and each of them has a time requirement (in which the coverage hole has to be healed), conflicts for the requests of the same mobile sensor may arise. A distributed multiple mobile sensor schedufing protocol (DMS) is proposed in this paper to solve this problem by finding mobile sensors in the time response zone defined by the time requirement of each coverage hole. Simulation results show that DMS can well schedule the mobile sensors to move to multiple coverage holes within the time requirement.展开更多
Efficient multi-machine cooperation and network dynamics still remain open that jeopardize great applications in largescale machine-to-machine(M2M) networks. Among all possible machine cooperation controls, to synchro...Efficient multi-machine cooperation and network dynamics still remain open that jeopardize great applications in largescale machine-to-machine(M2M) networks. Among all possible machine cooperation controls, to synchronize tremendous machines in a timing-efficient brings one of the greatest challenge and serves as the foundation for any other network control policies. In this paper, we propose a linear-time synchronization protocol in large M2M networks. Specifically, a closed-form of synchronization rate is provided by developing the statistical bounds of the second smallest eigenvalue of the graph Laplacian matrix. These bounds enable the efficient control of network dynamics, facilitating the timing synchronization in networks. Through a practical study in Metropolis, simulation results confirm our theoretical analysis and provide effective selection of wireless technologies, including Zigbee, Wi-Fi, and cellular systems, with respect to the deployed density of machines. Therefore, this paper successfully demonstrates a practical timing synchronization, to make a breakthrough of network dynamic control in real-world machine systems, such as Internet of Things.展开更多
Distributed underwater acoustic sensor networks(UASNs)are envisioned in real-time ocean current velocity estimation.However,UASNs at present are still dominated by post-processing partially due to the complexity of on...Distributed underwater acoustic sensor networks(UASNs)are envisioned in real-time ocean current velocity estimation.However,UASNs at present are still dominated by post-processing partially due to the complexity of on-line detection for travel times and lack of dedicated medium access control(MAC)protocols.In this study,we propose a dedicated MAC protocol package for real-time ocean current velocity estimation using distributed UASNs.First,we introduce the process and requirements of ocean current velocity estimation.Then,we present a series of spatial reuse time division multiple access(TDMA)protocols for each phase of real-time ocean current field estimation using distributed UASNs,followed by numerical analysis.We divide UASNs into two categories according to their computing ability:feature-complete and feature-incomplete systems.The feature-complete systems that have abundant computing ability carry out the presented MAC protocol package in three phases,whereas the feature-incomplete ones do not have enough computing ability and the presented MAC protocol package is reduced to two phases plus an additional downloading phase.Numerical analysis shows that feature-complete systems using mini-slot TDMA have the best real-time performance,in comparison with feature-incomplete systems and other feature-complete counterparts.Feature-incomplete systems are more energy-saving than feature-complete ones,owing to the absence of in-network data exchange.展开更多
Use of fly-by-wire technology for aircraft flight controls have resulted in an improved performance and reliability along with achieving reduction in control system weight. Implementation of full authority digital eng...Use of fly-by-wire technology for aircraft flight controls have resulted in an improved performance and reliability along with achieving reduction in control system weight. Implementation of full authority digital engine control has also resulted in more intelligent, reliable, light-weight aircraft engine control systems. Greater reduction in weight can be achieved by replacing the wire harness with a wireless communication network. The first step towards fly-by-wireless control systems is likely to be the introduction of wireless sensor networks (WSNs). WSNs are already finding a variety of applications for both safety-critical and nonsafety critical distributed systems. Some of the many potential benefits of using WSN for aircraft systems include weight reduction, ease of maintenance and an increased monitoring capability. This paper discusses the application of WSN for several aircraft systems such as distributed aircraft engine control, aircraft flight control, aircraft engine and structural health monitoring systems. A brief description of each system is presented along with a discussion on the technological challenges. Future research directions for application of WSN in aircraft systems are also discussed.展开更多
Using a series of quantum correlated photon pairs, we propose a theoretical scheme for any-to-any multi-user quantum key distribution network based on differential phase shift. The differential phase shift and the dif...Using a series of quantum correlated photon pairs, we propose a theoretical scheme for any-to-any multi-user quantum key distribution network based on differential phase shift. The differential phase shift and the different detection time slots ensure the security of our scheme against eavesdropping. We discuss the security under the intercept-resend attack and the source replacement attack.展开更多
The simultaneous advances in the Internet of Things(IoT),Artificial intelligence(AI)and Robotics is going to revolutionize our world in the near future.In recent years,LoRa(Long Range)wireless powered by LoRaWAN(LoRa ...The simultaneous advances in the Internet of Things(IoT),Artificial intelligence(AI)and Robotics is going to revolutionize our world in the near future.In recent years,LoRa(Long Range)wireless powered by LoRaWAN(LoRa Wide Area Network)protocol has attracted the attention of researchers for numerous applications in the IoT domain.LoRa is a low power,unlicensed Industrial,Scientific,and Medical(ISM)bandequipped wireless technology that utilizes a wide area network protocol,i.e.,LoRaWAN,to incorporate itself into the network infrastructure.In this paper,we have evaluated the LoRaWAN communication protocol for the implementation of the IoT(Internet of Things)nodes’communication in a forest scenario.The outdoor performance of LoRa wireless in LoRaWAN,i.e.,the physical layer,has been evaluated in the forest area of Kashirampur Uttarakhand,India.Hence,the present paper aims towards analyzing the performance level of the LoRaWAN technology by observing the changes in Signal to Noise Ratio(SNR),Packet Reception Ratio(PRR)and Received Signal Strength Indicator(RSSI),with respect to the distance between IoT nodes.The article focuses on estimating network lifetime for a specific set of LoRa configuration parameters,hardware selection and power constraints.From the experimental results,it has been observed that transmissions can propagate to a distance of 300 m in the forest environment,while consuming approx.63%less energy for spreading factor 7 at 2 dBm,without incurring significant packet loss with PRR greater than 80%.展开更多
It is a well-established fact that wireless sensor networks (WSNs) are very power constraint networks, but besides this, they are inherently more fault-prone than any other type of wireless network and their protocol ...It is a well-established fact that wireless sensor networks (WSNs) are very power constraint networks, but besides this, they are inherently more fault-prone than any other type of wireless network and their protocol design is very application specific. Major reasons for the faults are the unpredictable wireless communication channel, battery depletion, as well as fragility and mobility of the nodes. Furthermore, as traditional protocol design methods have proved inadequate, the cross-layer design (CLD) approach, which allows for interactions between different layers, providing more flexible and energy-efficient functionality, has emerged as a viable solution for WSNs. In this study we define a fault tolerance management module suitable to the requirements, limitations, and specifics of WSNs, encompassing methods for fault detection, fault prevention, fault management, and recovery. The suggested solution is in line with the CLD approach, which is an important factor in increasing the network performance. Through simulations the functionality of the network is evaluated, based on packet loss, delay, and energy consumption, and is compared with a similar solution not including fault management. The results achieved support the idea that the introduction of a unified approach to fault management improves the network performance as a whole.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61571303,No.61571004)the Shanghai Natural Science Foundation(Grant No.21ZR1461700)+3 种基金the Shanghai Sailing Program(Grant No.19YF1455800)the National Science and Technology Major Project of China(No.2018ZX03001031)the Fundamental Research Funds for State Key Laboratory of Synthetical Automation for Process Industries(Grant No.PAL-N201703)the National Key Research and Development Program of China-Internet of Things and Smart City Key Program(No.2019YFB2101600,NO.2019YFB2101602,No.2019YFB2101602-03).
文摘The single planar routing protocol has a slow convergence rate in the large-scale Wireless Sensor Network(WSN).Although the hierarchical routing protocol can effectively cope with large-scale application scenarios,how to elect a secure cluster head and balance the network load becomes an enormous challenge.In this paper,a Trust Management-based and Low Energy Adaptive Clustering Hierarchy protocol(LEACH-TM)is proposed.In LEACH-TM,by using the number of dynamic decision cluster head nodes,residual energy and density of neighbor nodes,the size of the cluster can be better constrained to improve energy efficiency,and avoid excessive energy consumption of a node.Simultaneously,the trust management scheme is introduced into LEACH-TM to defend against internal attacks.The simulation results show that,compared with LEACH-SWDN protocol and LEACH protocol,LEACH-TM outperforms in prolonging the network lifetime and balancing the energy consumption,and can effectively mitigate the influence of malicious nodes on cluster head selection,which can greatiy guarantee the security of the overall network.
基金supported by National Natural Science Foundation of China Grant No. 60803150, No.60803151the National High Technology Research and Development Program of China under grant Nos.2008AA01Z411+1 种基金the Key Program of NSFC-Guangdong Union Foundation under Grant No.U0835004China Postdoctoral Science Foundation No. 20090451495
文摘Wireless sensor networks are open architectures, so any potential threat can easily intercept, wiretap and counterfeit the information. Therefore, the safety of WSN is very important. Since any single key system cannot guarantee the security of the wireless sensor network for communications, this paper introduces a hierarchical key management scheme based on the different abilities of different sensor nodes in the clustered wireless sensor network. In this scheme, the nodes are distributed into several clusters, and a cluster head must be elected for each cluster. Private communication between cluster heads is realized through the encryption system based on the identity of each head while private communication between cluster nodes in a same cluster head is achieved through the random key preliminary distribution system. Considering the characteristics of WSN, we adopt dynamic means called dynamic cluster key management scheme to deal with master key, so master key will be updated according to the changed dynamic network topology. For cluster head node plays a pivotal role in this scheme, a trust manage-ment system should be introduced into the election of the cluster head which will exclude the malicious node from outside the cluster, thus improve the whole network security.
文摘Underwater acoustic sensor networks (UASNs) are often used for environmental and industrial sensing in undersea/ocean space, therefore, these networks are also named underwater wireless sensor networks (UWSNs). Underwater sensor networks are different from other sensor networks due to the acoustic channel used in their physical layer, thus we should discuss about the specific features of these underwater networks such as acoustic channel modeling and protocol design for different layers of open system interconnection (OSI) model. Each node of these networks as a sensor needs to exchange data with other nodes;however, complexity of the acoustic channel makes some challenges in practice, especially when we are designing the network protocols. Therefore based on the mentioned cases, we are going to review general issues of the design of an UASN in this paper. In this regard, we firstly describe the network architecture for a typical 3D UASN, then we review the characteristics of the acoustic channel and the corresponding challenges of it and finally, we discuss about the different layers e.g. MAC protocols, routing protocols, and signal processing for the application layer of UASNs.
文摘Recent advancements in wireless communication and microchip techniques have accelerated the development of wireless sensor networks (WSN). Key management in WSN is a critical and challenging problem because of the inner characteristics of sensor networks: deployed in hostile environments, limited resource and ad hoc nature. This paper investigates the constraints and special requirements of key management in sensor network environment, and some basic evaluation metrics are introduced. The key pre-distribution scheme is thought as the most suitable solution for key management problem in wireless sensor networks. It can be classified into four classes: pure probabilistic key pre-distribution, polynomial-based, Blom's matrix-based, and deterministic key pre-distribution schemes. In each class of methods, the related research papers are discussed based on the basic evaluation metrics. Finally, the possible research directions in key management are discussed.
文摘To design an energy-efficient Medium Access Control(MAC)protocol for the Underwater Wireless Sensor Networks(UWSNs)is an urgent research issue since depleted batteries cannot be recharged or replaced in the underwater environment.Moreover,the underwater acoustic channels are affected by hindrances such as long propagation delay and limited bandwidth,which appear in the design of the MAC protocol for the UWSNs.The available MAC protocols for the terrestrial wireless sensor networks exhibit low performance in energy efficiency,throughput and reliability in the UWSNs,and cannot be used in the UWSNs directly because of their unique characteristics.This paper proposes a synchronous duty-cycled reservation-based MAC protocol named Ordered Contention MAC(OCMAC)protocol.The basic mechanism of this protocol is to schedule data transmission by transmitters through the scheduling of Ready To Send(RTS)frames.The protocol eliminates the possible collision during data transmission and improves communication efficiency.The paper analyzes the performance in energy efficiency,throughput and reliability of the protocol by modeling the queuing behavior of OCMAC with a Markov Chain process.Furthermore,the analytical model is validated through a simulation study.The analysis results demonstrated that while providing good throughput and reliability,OCMAC can achieve energy saving.
文摘Wireless sensor networks (WSNs) attract considerable amount of research efforts from both industry and academia. With limited power and computational capability available on a sensor node, robustness and efficiency are the main concerns when designing a routing protocol for WSNs with low complexity. There are various existing design approaches, such as data-centric approach, hierarchical approach and location-based approach, which were designed for a particular application with specific requirements. In this paper, we study the design and implementation of a routing protocol for data acquisition in WSNs. The designed routing protocol is named Centralized Sensor Protocol for Information via Negotiation (CSPIN), which essentially combines the advertise-request-transfer process and a routing distribution mechanism. Implementation is realized and demonstrated with the Crossbow MicaZ hardware using nesC/TinyOS. It was our intention to provide a hand-on study of implementation of centralized routing protocol for WSNs.
文摘Wireless sensor network(WSN)is considered as the fastest growing technology pattern in recent years because of its applicability in varied domains.Many sensor nodes with different sensing functionalities are deployed in the monitoring area to collect suitable data and transmit it to the gateway.Ensuring communications in heterogeneous WSNs,is a critical issue that needs to be studied.In this research paper,we study the system performance of a heterogeneous WSN using LoRa–Zigbee hybrid communication.Specifically,two Zigbee sensor clusters and two LoRa sensor clusters are used and combined with two Zigbee-to-LoRa converters to communicate in a network managed by a LoRa gateway.The overall system integrates many different sensors in terms of types,communication protocols,and accuracy,which can be used in many applications in realistic environments such as on land,under water,or in the air.In addition to this,a synchronous management software on ThingSpeak Web server and Blynk app is designed.In the proposed system,the token ring protocol in Zigbee network and polling mechanism in LoRa network is used.The system can operate with a packet loss rate of less than 0.5%when the communication range of the Zigbee network is 630 m,and the communication range of the LoRa network is 3.7 km.On the basis of the digital results collected on the management software,this study proves tremendous improvements in the system performance.
基金funded by the Deanship of Scientific Research at Najran University for this research through a Grant(NU/RG/SERC/12/50)under the Research Groups at Najran University,Saudi Arabia.
文摘The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(IPv6)in the IoT.However,RPL is vulnerable to various attacks,including the sinkhole attack,which disrupts the network by manipulating routing information.This paper proposes the Unweighted Voting Method(UVM)for sinkhole node identification,utilizing three key behavioral indicators:DODAG Information Object(DIO)Transaction Frequency,Rank Harmony,and Power Consumption.These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant features used in previous research.The UVM method employs an unweighted voting mechanism,where each voter or rule holds equal weight in detecting the presence of a sinkhole attack based on the proposed indicators.The effectiveness of the UVM method is evaluated using the COOJA simulator and compared with existing approaches.Notably,the proposed approach fulfills power consumption requirements for constrained nodes without increasing consumption due to the deployment design.In terms of detection accuracy,simulation results demonstrate a high detection rate ranging from 90%to 100%,with a low false-positive rate of 0%to 0.2%.Consequently,the proposed approach surpasses Ensemble Learning Intrusion Detection Systems by leveraging three indicators and three supporting rules.
基金fund received from Department of Science and Technology,Govt.of India,grant no.DST/CERI/MI/SG/2017/080(AU)(G).
文摘Nowadays,wireless sensor networks play a vital role in our day to day life.Wireless communication is preferred for many sensing applications due its convenience,flexibility and effectiveness.The sensors to sense the environmental factor are versatile and send sensed data to central station wirelessly.The cluster based protocols are provided an optimal solution for enhancing the lifetime of the sensor networks.In this paper,modified K-means++algorithm is used to form the cluster and cluster head in an efficient way and the Advanced Energy-Efficient Cluster head selection Algorithm(AEECA)is used to calculate the weighted fac-tor of the transmission path and effective data collection using gateway node.The experimental results show the proposed algorithm outperforms the existing routing algorithms.
文摘A Wireless Sensor Network (WSN) consists of a large number of randomly deployed sensor nodes. These sensor nodes organize themselves into a cooperative network and perform the three basic functions of sensing, computations and communications. Research in WSNs has become an extensive explorative area during the last few years, especially due to the challenges offered, energy constraints of the sensors being one of them. In this paper, a thorough comprehensive study of the energy conservation challenges in wireless sensor networks is carried out. The need for effective utilization of limited power resources is also emphasized, which becomes pre-eminent to the Wireless Sensor Networks.
文摘Several protocols and schemes have been proposed to reduce energy consumption in Wireless Sensor Net-works (WSNs). In this paper we employ farcoopt, a cross layer design approach with the concept of coop-eration among the nodes with best farthest neighbor scheme to increase the Quality of Service (QoS), reduce energy consumption, increases performance and end-to-end throughput. We present cooperative transmission to connect previously disconnect parts of a network thus overcoming the separation problem of multi-hop network. We show that this approach improves connectivity over 50% compared to multi-hop approaches and reduces the number of nodes necessary to provide full coverage of an area up to 35%. Simulation results show that on increase of data rates i.e. packet the network life time increases in farcoopt as compared to tra-ditional multi hop approach. The result of this analysis is presented in this work.
基金supported by the National Natural Science Foundation of China under Grant No. 61133016
文摘Coverage holes often appear in wireless sensor networks due to sensor failure or the inheritance of sensor's random distribution. In the hybrid model, mobile sensors in the network are acquired to heal coverage holes by their mobifity. When multiple coverage holes appear in the sensor network and each of them has a time requirement (in which the coverage hole has to be healed), conflicts for the requests of the same mobile sensor may arise. A distributed multiple mobile sensor schedufing protocol (DMS) is proposed in this paper to solve this problem by finding mobile sensors in the time response zone defined by the time requirement of each coverage hole. Simulation results show that DMS can well schedule the mobile sensors to move to multiple coverage holes within the time requirement.
基金supported by the Major Research plan of the National Natural Science Foundation of China 9118008National Key Technology R&D Program of the Ministry of Science and Technology 2014BAC16B01
文摘Efficient multi-machine cooperation and network dynamics still remain open that jeopardize great applications in largescale machine-to-machine(M2M) networks. Among all possible machine cooperation controls, to synchronize tremendous machines in a timing-efficient brings one of the greatest challenge and serves as the foundation for any other network control policies. In this paper, we propose a linear-time synchronization protocol in large M2M networks. Specifically, a closed-form of synchronization rate is provided by developing the statistical bounds of the second smallest eigenvalue of the graph Laplacian matrix. These bounds enable the efficient control of network dynamics, facilitating the timing synchronization in networks. Through a practical study in Metropolis, simulation results confirm our theoretical analysis and provide effective selection of wireless technologies, including Zigbee, Wi-Fi, and cellular systems, with respect to the deployed density of machines. Therefore, this paper successfully demonstrates a practical timing synchronization, to make a breakthrough of network dynamic control in real-world machine systems, such as Internet of Things.
基金This work was supported by the National Natural Science Foundation of China(No.61531017)the Science and Technology Bureau of Zhoushan(No.2018C41029)the Science and Technology Department of Zhejiang Province(Nos.2018R52046 and LGG18F010005).
文摘Distributed underwater acoustic sensor networks(UASNs)are envisioned in real-time ocean current velocity estimation.However,UASNs at present are still dominated by post-processing partially due to the complexity of on-line detection for travel times and lack of dedicated medium access control(MAC)protocols.In this study,we propose a dedicated MAC protocol package for real-time ocean current velocity estimation using distributed UASNs.First,we introduce the process and requirements of ocean current velocity estimation.Then,we present a series of spatial reuse time division multiple access(TDMA)protocols for each phase of real-time ocean current field estimation using distributed UASNs,followed by numerical analysis.We divide UASNs into two categories according to their computing ability:feature-complete and feature-incomplete systems.The feature-complete systems that have abundant computing ability carry out the presented MAC protocol package in three phases,whereas the feature-incomplete ones do not have enough computing ability and the presented MAC protocol package is reduced to two phases plus an additional downloading phase.Numerical analysis shows that feature-complete systems using mini-slot TDMA have the best real-time performance,in comparison with feature-incomplete systems and other feature-complete counterparts.Feature-incomplete systems are more energy-saving than feature-complete ones,owing to the absence of in-network data exchange.
文摘Use of fly-by-wire technology for aircraft flight controls have resulted in an improved performance and reliability along with achieving reduction in control system weight. Implementation of full authority digital engine control has also resulted in more intelligent, reliable, light-weight aircraft engine control systems. Greater reduction in weight can be achieved by replacing the wire harness with a wireless communication network. The first step towards fly-by-wireless control systems is likely to be the introduction of wireless sensor networks (WSNs). WSNs are already finding a variety of applications for both safety-critical and nonsafety critical distributed systems. Some of the many potential benefits of using WSN for aircraft systems include weight reduction, ease of maintenance and an increased monitoring capability. This paper discusses the application of WSN for several aircraft systems such as distributed aircraft engine control, aircraft flight control, aircraft engine and structural health monitoring systems. A brief description of each system is presented along with a discussion on the technological challenges. Future research directions for application of WSN in aircraft systems are also discussed.
基金Supported by the National Key Basic Research Programme of China under Grant No 2006CB921106, the National Natural Science Foundation of China under Grant Nos 10325521 and 60433050, and the SRFDP Programme of the Ministry of Education of China, and the Key Project of the Ministry of Education of China under Grant No 306020.
文摘Using a series of quantum correlated photon pairs, we propose a theoretical scheme for any-to-any multi-user quantum key distribution network based on differential phase shift. The differential phase shift and the different detection time slots ensure the security of our scheme against eavesdropping. We discuss the security under the intercept-resend attack and the source replacement attack.
文摘The simultaneous advances in the Internet of Things(IoT),Artificial intelligence(AI)and Robotics is going to revolutionize our world in the near future.In recent years,LoRa(Long Range)wireless powered by LoRaWAN(LoRa Wide Area Network)protocol has attracted the attention of researchers for numerous applications in the IoT domain.LoRa is a low power,unlicensed Industrial,Scientific,and Medical(ISM)bandequipped wireless technology that utilizes a wide area network protocol,i.e.,LoRaWAN,to incorporate itself into the network infrastructure.In this paper,we have evaluated the LoRaWAN communication protocol for the implementation of the IoT(Internet of Things)nodes’communication in a forest scenario.The outdoor performance of LoRa wireless in LoRaWAN,i.e.,the physical layer,has been evaluated in the forest area of Kashirampur Uttarakhand,India.Hence,the present paper aims towards analyzing the performance level of the LoRaWAN technology by observing the changes in Signal to Noise Ratio(SNR),Packet Reception Ratio(PRR)and Received Signal Strength Indicator(RSSI),with respect to the distance between IoT nodes.The article focuses on estimating network lifetime for a specific set of LoRa configuration parameters,hardware selection and power constraints.From the experimental results,it has been observed that transmissions can propagate to a distance of 300 m in the forest environment,while consuming approx.63%less energy for spreading factor 7 at 2 dBm,without incurring significant packet loss with PRR greater than 80%.
文摘It is a well-established fact that wireless sensor networks (WSNs) are very power constraint networks, but besides this, they are inherently more fault-prone than any other type of wireless network and their protocol design is very application specific. Major reasons for the faults are the unpredictable wireless communication channel, battery depletion, as well as fragility and mobility of the nodes. Furthermore, as traditional protocol design methods have proved inadequate, the cross-layer design (CLD) approach, which allows for interactions between different layers, providing more flexible and energy-efficient functionality, has emerged as a viable solution for WSNs. In this study we define a fault tolerance management module suitable to the requirements, limitations, and specifics of WSNs, encompassing methods for fault detection, fault prevention, fault management, and recovery. The suggested solution is in line with the CLD approach, which is an important factor in increasing the network performance. Through simulations the functionality of the network is evaluated, based on packet loss, delay, and energy consumption, and is compared with a similar solution not including fault management. The results achieved support the idea that the introduction of a unified approach to fault management improves the network performance as a whole.